

The Msys library

Msys is a library for inspecting and manipulating chemical structures of
the sort used in molecular simulations. Its main features include:

	A hierarchical organization of structure information, as opposed to the
flat tables typically used in molecular file formats;

	A powerful VMD-like atom selection language;

	Representation of molecular forcefields which supports sharing of
parameters by many groups of terms;

	Conversion to and from many chemical file formats, with forcefield
and chemical information preserved where possible;

	Command line tools for scripting common tasks;

	C++ and Python interfaces.

Contents:

	Overview
	Molecular Structures

	Forcefields

	Reading and Writing Files

	Atom selections
	Grammar

	Differences with VMD

	Smarts pattern selections

	Parameter type selections

	Comparison selections

	User-defined keywords

	User-defined atom selection macros

	Python Scripting
	Overview

	The msys module

	Pfx

	Molfile

	AnnotatedSystem

	SmartsPattern

	Nonbonded parameters
	Alternative nonbonded tables

	Overriding nonbonded interactions

	Alchemical nonbonded interactions

	NonbondedInfo

	Command line tools
	Conversion

	Information

	Basic Manipulation

	Structure building

	Validation

	Recipes
	Obtaining force-field parameters for certain atoms

	Adding artificial bonds

	Adding energy groups

	Remove selected constraints

	Canonicalize position restraint terms

	Processing multi-entry files (e.g. SDF files)

	Processing large SDF files

	Change the mass of selected atoms

	DMS Files
	Overview

	Chemical Structure

	Forcefields

	Alchemical systems

	References

	Release notes

Overview

This section describes how msys represents particles and forcefields,
and the relationship between the msys representation and the various
chemical file formats msys supports.

Molecular Structures

[image: _images/msys_overview.png]
All molecular structure in Msys is held in an object called a System.
Within a System, individual particles, including physical atoms as
well as pseudo-particles used as interaction sites, are represented as
Atoms. Bonds between Atoms are represented by a Bond structure.
Atoms are grouped into Residues, and Residues are grouped into
Chains. Finally, Chains are grouped into higher-level structures
called “components”, or Cts for short.

Every structure type is contained within its parent type; thus, even a single
particle System will contain (at least) one Residue, Chain, and
Ct. If there is no information in the file to delineate separate
Residues, Chains, etc., then only a single such entity will be
created.

There are also several other miscellaneous tables in each System:

	The cell holds the periodic cell information. It consists of three
vectors, each with three components.

	The nonbonded_info structure holds meta-information about the type
of nonbonded interactions used in the forcefield.

	There may be one or more auxiliary tables, indexed by name, which hold
arbitrary additional forcefield data or other user-defined tables. These
are indexed by name. The main use for auxiliary tables is to hold
“cmap”-style tables from Charmm-style forcefields.

The Ct is the highest level of molecular organization, after the
System. Many file formats, including MAE, SDF, etc., contain multiple
structures, and it can be convenient to represent the entire contents of
such a file in a single msys System without losing the distinction
between structure records. When msys loads such a multi-component file,
each entry gets placed in its own Ct. Another use for the Ct objects
is when one System is appended to another. If there were no Ct
objects, then Chains in one system might be unintentionally combined
with Chains in the other system if the Chains had the same name.
Finally, Ct blocks provide a space for arbitrary metadata about system
components to be stored.

Chains in msys represent collections of Residues. Their main purpose
is to hold the traditional chain and segment name information used in
popular formats such as PDB.

Chains have just two settable properties: name and segid.
When loading chemical systems, Residues are grouped into Chains
entities based on their chain name and/or segid in the file, whichever
is applicable.

A Residue in msys is a collection of Atoms. Residues have three
settable attributes: name, resid, and insertion.

Finally, the Atom class represents all particles in the System,
including real atoms as well as virtual and dummy particles. Each Atom
has an atomic number, position, mass, and a number of other built-in
properties.

Forcefields

A System also holds a set of TermTables representing the interactions
between Atoms. A TermTable can be thought of as a particular kind
of interaction; for example, a fully parameterized system would likely
contain a stretch_harm TermTable to represent two-body covalent
bond forces. Each Term in a TermTable refers to the same number
of atoms, though there can be any number of Terms in a given TermTable.

Typically, many of the interactions in a TermTable are parameterized
using identical parameters, especially when there are many identical
copies of the same molecule in the System. For compactness, and also
for ease of forcefield parameterization, a TermTable holds a separate
table called a ParamTable which contains the interaction properties that
can be shared by many Terms. Changes to an entry in a ParamTable will
affect the interaction strengths of every Term referencing that entry.
However, as illustrated below, operations on an individual Term will affect
the interaction properties of just that Term; behind the scenes, Msys
takes care of creating a copy of a Term’s parameters as needed.

It is also possible for developers to construct multiple TermTables
that share the very same ParamTable, so that changes to a shared
ParamTable affect multiple TermTables or Systems.

Reading and Writing Files

Msys reads and writes many popular chemical file formats. While most file
formats have some concept of particles, residues, and chains, the way in
which these groupings are specified varies by file type. Even within
a file type, groupings are not always done consistently; for example,
a PDB file might have both segment and chain identifiers, and there is
no requirement in the file that there be any relationship between them.

In addition, many chemical file formats, including MAE, MOL2, SDF,
as well as DMS, can contain multiple, logically distinct chemical
groups or components. In some contexts, such as an MD simulation, it
makes sense to consider all the components as part of a single system.
In other contexts, such as processing a large batch of ligand structures,
one wants to consider the components one at a time.

Forcefield information is also present in different file types in
widely disparate forms. If forcefield information is read
in one format and written out in another, it must be done with minimal
loss of precision.

Mapping of residues and chains

As mentioned earlier, Msys groups all Atoms into Residues, and all
Residues into Chains. This hierarchy is, unfortunately, rarely made
explicit in the chemical system files in wide use, so Msys must infer the
grouping based on the values of certain particle attributes.

Msys uses the chain and segid particle properties to group Residues
into Chains. Within a chain, Atoms are grouped into Residues based
on their resname and resid attributes. Thus, in Msys, every Atom
within a given Residue has by definition the same resname and resid.
By the same token, every Atom and Residue within a given Chain has
the same chain and segid.

Upon loading a system, the number of Chains will be given by the number
of distinct chain and segid pairs appearing in the particle table,
and, within a given Chain, the number of Residues will be given by
the number of distinct resname and resid pairs appearing in atoms
sharing the Chain’s chain and segid. After loading a system,
one is free to modify the resname and resid of any Residue.
Bear in mind, however, that if two initially distinct Residues in the
same Chain come to have identical resname and resid, they will
be merged into a single Residue upon saving and loading.

Whitespace in atom, residue and chain names

The PDB file format specifies that atom and residue names should be
aligned to particular columns within a 4-column region. Unfortunately,
some have taken this alignment requirement to mean that an atom’s
name actually includes the surrounding whitespace! When Msys loads
a chemical system, the following fields are stripped of leading and
trailing whitespace before they are inserted into the structure: name
(atom name), resname (residue name), chain (chain identifier),
and segid (segment identifier).

Atom selections

Msys implements an atom selection language similar to that of VMD.
From Python, the language may be used to select atoms or clone subsets
of a System, using the select, selectIds, or clone
methods of System. In C++, the Atomselect function provides
all atom selection functionality.

Grammar

The Msys atom selection grammar supports several primitive types which
can be combined in various ways using logical operators. Primitive
types include the following:

	Keyword selections: an attribute followed by one or more values, ranges,
or regular expressions:

name CA # a single value
resid 10 20 30 # multiple values
resid 10 to 30 # a range of values
name "C.*" # regular expression, recognized by double quotes
resid 5 8 to 10 # combination of single value and a range

	Singleword selections: A boolean attribute. This includes both
built-in singlewords such as protein, as well as those defined
as macros, such as acidic

protein # selects atoms identified as protein
acidic # expands to 'resname ASP GLU

	String functions: these are similar in form to keyword selections, but
they use their arguments in special ways:

smarts 'c[$(c[Ox1])]c' # a smarts query.
paramtype nonbonded HP # query on the nonbonded type of a particle

	Comparisons: An inequality formed by two expressions, at least one of which
should be a function of atom attributes:

x > 0 # atoms in the positive x halfspace

From these primitive selections, more complex selections may be formed
using the following constructs.

	Boolean operators: AND, OR, NOT:

protein and not hydrogen # heavy protein atoms
not oxygen and water # same as "(not oxygen) and water"
not oxygen or water # same as "(not oxygen) or water"

	SAME attribute AS (selection):

same residue as name CA # residues containing a CA atom

	Within selections of various flavors:

within 3 of protein # atoms within 3 of protein, including protein
exwithin 3 of protein # atoms within 3 of protein, but not protein
pbwithin 3 of protein # uses minimum image distance
withinbonds 2 of resid 10 # atoms within two bonds of resid 10

	Nearest selections:

nearest 10 to residue 2 # nearest 10 atoms to any atom in residue 2
pbnearest 10 to residue 2 # same, but with minimum image distance

In comparisons, expressions can be formed in the following ways.

	Numeric literals, and keywords with numeric types:

x < 3 # atoms whose x coordinate is less than 3

	Composition of expressions using various mathematical operators,
parentheses, and functions:

x + y * z < 3 # the usual precedence rules apply
sqr(x)/36 + sqr(z)/125 < 1 # an ellipsoidal cylinder

Differences with VMD

Although the atom selection language in msys is similar to VMD’s, there
are some important differences to bear in mind if you switch between
them:

	Element matching: In Msys, the atom selections “carbon”, “hydrogen”,
“oxygen”, etc. are based on the atomic number of the atoms. In VMD,
these atom selections are computed using a regular expression based
on the atom name:

vmd > atomselect macro oxygen name "O.*"

vmd > atomselect macro hydrogen name "[0-9]?H.*"

vmd > atomselect macro nitrogen name "N.*"

vmd > atomselect macro carbon name "C.*" and not ion

	Implicit ‘and’: in VMD, selections can sometimes be concatenated with
an implicit ‘and’; e.g. “water within 3 of protein” will be parsed by
VMD as “water and within 3 of protein”. In Msys, omitting the ‘and’ will
result in a parse error.

	Field size: DMS and MAE files can hold chain, segment, and residue names
of arbitrary length. In Msys, these values are used as-is. In VMD,
the values are truncated; in particular, chain will be truncated to
a single character in VMD, but not by Msys.

	Data representation: Msys has no concept of secondary structure, so the
“sheet”, helix”, etc. atom selection keywords are not implemented in
msys.

	Floating-point roundoff: There may occasionally be differences in the
results of distance based atom selections simply due the fact that Msys
stores positions as doubles, while VMD stores them as floats.

Built-in selections

The following selection keywords are available:

	keyword

	type

	definition

	atomicnumber

	integer

	Atom.atomic_number

	element

	string

	Abbreviation for element Atom.atomic_number

	chain

	string

	Chain.name

	segid

	string

	Chain.segid

	charge

	float

	Atom.charge

	fragment

	integer

	Connected residues will all have the same
fragment id, except that the connection
check will not follow disulfide bridges,
identified as atoms whose name is “SG”.

	index

	integer

	Atom.id

	mass

	float

	Atom.mass

	name

	string

	Atom.name

	numbonds

	integer

	Atom.nbonds - includes bonds to pseudoatoms

	degree

	integer

	number of bonds to real atoms; 0 for pseudoatoms

	resid

	integer

	Residue.resid

	residue

	integer

	Residue.id

	resname

	string

	Residue.name

	fragid

	integer

	Atom.fragid. Connnected atoms will all
have the same fragid.

	x, y, z

	float

	Atom.x, Atom.y, Atom.z, the position.

	vx, vy, vz

	float

	Atom.vx, Atom.vy, Atom.vz, the velocity.

The following selection singlewords are available.

	singleword

	definition

	all

	Every atom.

	none

	No atoms.

	water

	Atoms belonging to a residue containing the atomic number
and bond structure of water, as well as those residues
whose residue name is one of the following: “H2O”, “HH0”,
“OHH”, “HOH”, “OH2”, “SOL”, “WAT”, “TIP”, “TIP2”, “TIP3”,
“TIP4”, “SPC”.

	hydrogen

	atomic number 1

	backbone

	This singleword includes both protein backbone as well as
nucleic backbone. Protein backbone is identified by
searching for atoms named “CA”, “C”, “O”, and “N” in the
same residue, and for atoms named “OT1”, “OT2”, “OXT”,
“O1”, or “O2” that are bonded to one of the members of
the first list. If at least four such atoms are found,
those atoms are identified as backbone. Similarly,
nucleic acid backbone atom names are P”, “O1P”, “O2P”,
“OP1”, “OP2”, “C3*”, “C3’”, “O3*”, “O3’”, “C4*”, “C4’”,
“C5*”, “C5’”, “O5*”, or “O5’”; or atoms named “H5T” or
“H3T” bonded to a member of the first set. At least
four such atoms must be found in the same residue in
order to be identified as backbone.

	protein

	residues containing protein backbone atoms.

	nucleic

	residues containing nucleic backbone atoms.

The following are implemented as macros.

	macro

	definition

	at

	resname ADE A THY T

	acidic

	resname ASP GLU

	cyclic

	resname HIS PHE PRO TRP TYR

	acyclic

	protein and not cyclic

	aliphatic

	resname ALA GLY ILE LEU VAL

	alpha

	protein and name CA

	amino

	protein

	aromatic

	resname HIS PHE TRP TYR

	basic

	resname ARG HIS LYS HSP

	bonded

	degree > 0

	buried

	resname ALA LEU VAL ILE PHE CYS MET TRP

	cg

	resname CYT C GUA G

	charged

	basic or acidic

	hetero

	not (protein or nucleic)

	hydrophobic

	resname ALA LEU VAL ILE PRO PHE MET TRP

	small

	resname ALA GLY SER

	medium

	resname VAL THR ASP ASN PRO CYS ASX PCA HYP

	large

	protein and not (small or medium)

	neutral

	resname VAL PHE GLN TYR HIS CYS MET TRP ASX GLX PCA HYP

	polar

	protein and not hydrophobic

	purine

	resname ADE A GUA G

	pyrimidine

	resname CYT C THY T URA U

	surface

	protein and not buried

	lipid

	resname DLPE DMPC DPPC GPC LPPC PALM PC PGCL POPC POPE

	lipids

	lipid

	legacy_ion

	resname AL BA CA Ca CAL CD CES CLA CL ‘Cl-‘ Cl CO CS CU Cu CU1 CUA HG IN IOD K ‘K+’ MG MN3 MO3 MO4 MO5 MO6 NA Na NAW OC7 PB POT PT RB SOD TB TL WO4 YB ZN ZN1 ZN2

	ion

	degree 0 and not atomicnumber 0 1 2 5 6 7 8 10 18 36 54 86

	ions

	ion

	sugar

	resname AGLC

	solvent

	not (protein or sugar or nucleic or lipid)

	carbon

	atomicnumber 6

	nitrogen

	atomicnumber 7

	oxygen

	atomicnumber 8

	sulfur

	atomicnumber 16

	noh

	not hydrogen

	heme

	resname HEM HEME

Smarts pattern selections

A SMARTS pattern is like a regular expression for molecular structures;
it’s a concise way of specifying what sort of atom types and topology
you are looking for. SMARTS patterns can be embedded in an atom selection
by providing the keyword ‘smarts’ followed by one or more SMARTS patterns,
which you will need to surround in single quotes if it contains any special
characters like parentheses:

select benzene rings
mol.select("smarts 'c1ccccc1'")

See the description of the Smarts class for more information.

Parameter type selections

If a ParamTable contains a column named ‘type’, you can query for
atoms which participate in an interaction involving that type using the
‘paramtype’ keyword. For example:

select atoms whose nonbonded type is 'H1'
mol.select("paramtype nonbonded H1")

Comparison selections

Comparisons are formed from two expressions and a binary comparison
operator. The available comparison operators are the usual inequality
and equality operators: <, >, <=, >=, ==, and !=.
Expressions can be built up from numeric literals and from keywords of
float type, in the following ways:

	Binary mathematical operators: +, -, *, and /; e.g.,
“x * y - z < 3”.

	The C-style modulus function %; e.g., “residue % 10 == 0” for every
10th residue.

	Unary -.

	The functions sqr, sqrt, and abs; e.g., “sqrt(sqr(x)+sqr(y))<5”.

User-defined keywords

In addition to the aforementioned built-in keywords, any atom property may
also be used as an atom selection keyword. For example:

add atom property 'foo' to a system. The default value is empty string
mol.addAtomProp('foo', str)

set the foo property to 'jrg' for all alpha carbons
for a in mol.select('name CA'): a['foo'] = 'jrg'

check that selecting for foo equal to jrg is equivalent to 'name CA'
assert mol.select('foo jrg') == mol.select('name CA')

User-defined atom selection macros

This feature was removed in msys 1.7.7.

Python Scripting

Most of the functionality in msys is exposed in its Python interface.

Overview

This section introduces the Python interface and explains how to use
it effectively. We begin by introducing some concepts that pervade
the Python interface, then move to some examples.

Msys ids

In Msys, instances of the Atom, Bond, Residue, and Chain classes
are all Handles, in the sense that they refer to a piece of data held
by the parent System. All Msys handles have an immutable id
property that uniquely identifies them within their parent System.
Objects that hold references to other objects do so through the id
of that object. Two handles of the same type will compare equal to each
other if and only if they belong the same System and possess the same
id.

When you load a system from a file, or create one from scratch, these
ids will be numbered consecutively, starting at zero. Deleting
Atoms, Bonds, etc. from the System can introduce gaps in the set of
ids, but, once created, the id of an object never changes.

When Msys writes a DMS file, the primary keys of the particles will
be contiguous starting at 0, and will appear in the order in which the
particles appear in the System, even if the ids of the atoms in the
System are noncontiguous due to deletions. When Msys loads a DMS file,
if the primary keys happen to be noncontiguous, Msys will still create a
System with the usual contiguous ids.

Msys properties

Many objects in Msys (in particular, Atoms, Bonds, Terms, and
Params) can have typed attributes given to all members of the set
to which they belong. In Msys, these attributes are referred to as
properties, or props for short, and have a type of either int,
float, or str (string). The available property names and their
types can be queried in the appropriate parent object, using the
props, atom_props, etc. properties of the parent.
The value of the property for a given element can be read and modified
using a dictionary-like interface on the element itself:

mol = msys.LoadDMS('input.dms')
find all distinct values of the 'grp_energy' atom property, if it exists
grp_energy_vals = set()
if 'grp_energy' in mol.atom_props:
 for atm in mol.atoms:
 grp_energy_vals.add(atm['grp_energy'])

add a new property 'foo' of type 'float'
mol.addAtomProp('foo', float)
Set the value of foo to the z coordinate of the atom
for a in mol.atoms: a['foo'] = a.pos[2]

When you add a property to a set of elements, the initial value will be 0
for int and float types, and the empty string for str types. If a
property with the same name and type already exists, no action is taken.
An exception is thrown if you try to add a property with the same name
but different type from an existing property.

Getting started

Once you have your Python environment by loading the appropriate
modules, fire up Python, import the msys module, and load a dms
or mae file:

import msys

Load the entire contents of a DMS file
dms=msys.LoadDMS('system.dms')

Import an MAE file, performing conversions on its forcefield data
mae=msys.LoadMAE('system.mae')

You can also create a new System from scratch:

mol = msys.CreateSystem()

A System resides entirely in memory; changes to the System will not
persist until/unless you write it back out to a file:

Save the system as a DMS file
msys.SaveDMS(dms, 'output.dms')

Export to MAE file
msys.SaveMAE(dms, 'output.mae')

Msys also lets you append chemical systems to an existing file, for certain
file formats. The supported Save methods will have an ‘append’ option in
their function signatures.

The full set of Atoms, Bonds, Residues, Chains, and TermTables
are available by fetching them from the system. You can also fetch
the bonds involving a particular atom, the atoms in a residue, or the bonds
in a chain in a similar way:

get the number of atoms, and the total charge
atoms = dms.atoms
natoms = len(atoms)
total_charge = sum(a.charge for a in atoms)

find the atoms participating in double bonds
for chn in mol.chains:
 for res in chn.residues:
 for atm in res.atoms:
 for bnd in atm.bonds:
 if bnd.order == 2:
 print "atom %d in chain %s residue %s:%d has a double bond" % (
 atm.id, chn.name, res.name, res.num)

iterate over tables, print atoms per term and number of terms
for t in mol.tables:
 print "table %s: %d atoms, %d terms" % (t.name, t.natoms, t.nterms)

fetch the stretch_harm table. Throws an exception if no such table
stretch = mol.table('stretch_harm')

Atom selections let you fetch a list of atoms using the VMD atom selection
language. The select method returns a list of Atoms, which is
just a subset of the list that would be returned by the atoms property:

fetch the backbone atoms. Note that bb is just a Python list
bb = mol.select('backbone')

Once you have the atoms, if you actually want to work with
the residues or chains, it’s easy to do:

get the set of distinct residues in the backbone
bb_residues = set(a.residue for a in bb)

Note that the atoms returned by select refer back to the original
system. Msys also provides the means to create a new System independent
of the original, using either the CloneSystem function or the
clone method of System. When you clone a subset of a System, the
Terms in the forcefield whose atoms are completely contained in the
selection will be copied to the new System:

get the list of protein atoms
pro_atoms = mol.select('protein')

construct a new system containing just the protein
protein = msys.CloneSystem(pro_atoms)

Atoms in the cloned system have the same attributes as the originals,
but modifications to one do not affect the other
assert pro_atoms[0].charge == protein.atoms[0].charge
pro_atoms[0].charge += 3
assert pro_atoms[0].charge != protein.atoms[0].charge

The clone method of System is a more concise way of selecting a
set of atoms, then immediately creating a new System from it:

create a new System with all the hydrogens removed
hless = mol.clone('not hydrogen')

create a copy of the original
dup = mol.clone()

You can append the structure and associated forcefield from one System
onto another using System’s append method:

duplicate the protein by appending to itself
protein.append(protein)

load a water system and append it to the protein system. Just as for
CloneSystem, after appending water to protein, modifications to water
will not affect any atoms in protein.
water = msy.LoadDMS('water.dms')
protein.append(water)

Terms in a system’s forcefield can be accessed and modified by going
through the corresponding TermTable:

stretch = protein.table('stretch_harm')
terms = stretch.terms
params = stretch.params
props = params.props # ['fc', 'r0']
print "%d stretch terms, %d stretch params" % (terms.nterms, params.nparams)

You can change the properties of a selected Term using a
dictionary-like interface:

Change the force constant of the first stretch term to 42
stretch.terms[0]['fc] = 42

Adding new forcefield terms

Msys provides an interface for adding a TermTable corresponding
to a “standard” forcefield term and configuring that table with
its category and its the expected set of properties:

Get the available set of TermTable schemas:
schemas = msys.TableSchemas()

For bonded, constraint, virtual, and polar terms, as well as
the exclusion table:
table = mol.addTableFromSchema('posre_harm') # position restraints

Get the available set of nonbonded schemas
nb_schemas = msys.NonbondedSchemas()

For a nonbonded table:
nb = mol.addNonbondedFromSchema('vdw_12_6')

The addNonbondedFromSchema also takes care of configuring the
nonbonded_info properties of the System; see the section on
nonbonded parameters for more details.

If you have a new table type that hasn’t made it into Msys’ canonical
set, you can simply use addTable and configure the table yourself:

table = mol.addTable('funky_harm', 2)
table.params.addProp('fk', float)
table.params.addProp('r0', float)

If a table with a given name already exists in a System, addTable
and addTableFromSchema will just return the existing table.

Files with multiple components

To examine every structure in a multi-component file without having to
load them all into memory at once, use LoadMany. Unlike the Load
function, which always returns one System, LoadMany is a generator
which iterates over molecular structures in the input file:

for mol in msys.LoadMany('input.mol2'):
 print mol.name

Not every file format supports LoadMany; in cases where it doesn’t, LoadMany
will stop after a single iteration, yielding just one System.

If you use LoadMany to load a file, each System will have only one
Ct. However, if you use Load to import an MAE or DMS file, and the
file contains multiple components, the new System will contain Ct
elements corresponding to those components:

mol = msys.Load('small_vancomycin_complex.mae')
for ct in mol.cts:
 print ct.name

prints:
vancomycin_diala_complex
SPC water box

The ct information wil be preserved when saving the System back to an MAE
or DMS file.

You can create a multi-ct system from existing Systems using the
append method:

pro = msys.Load('protein.dms')
pro.ct(0).name = 'protein'
wat = msys.Load('water.dms')
wat.ct(0).name = 'water'
pro.append(wat)
assert pro.ncts == 2 # assuming there was 1 ct in protein.dms and wat.dms
assert pro.ct(1).name == 'water'
msys.Save(pro, 'combined.dms')

The msys module

This is the high-level Python interface for msys, intended for use
by chemists.

	
class msys.AnnotatedSystem(sys, allow_bad_charges=False)

	System that has been annotated with additional chemical information

The AnnotatedSystem class provides chemical annotation useful
primarily for evaluating smarts patterns. The system is expected to
already have have chemical reasonable bond orders and formal charges,
and to have no missing atoms (e.g. hydrogens). If these criteria
cannot be met, set allow_bad_charges=True in the constructor to bypass
these checks; in that case the AnnotatedSystem can still be used to
evaluate smarts patterns, but patterns making use of the electronic
state of the system (e.g. aromaticity, hybridization, etc.) will
not be correct (the system will appear to be entirely aliphatic).
You may also use the AssignBondOrderAndFormalCharge function to
assign reasonable bond orders and formal charges, assuming there
are no missing atoms.

The AnnotatedSystem defines a model for aromaticity. First, the SSSR
(smallest set of smallest rings) is determined. Next, rings which
share bonds are detected and grouped into ring systems. Rings are
initially marked as nonaromatic. If the ring system taken as a whole
is deemed to be aromatic, then all rings within it are aromatic as
well; otherwise, individual rings are checked for aromaticity. Rings
are checked in this fashion until no new rings are found to be aromatic.

A ring system is deemed to be aromatic if it satisfies Huckel’s
4N+2 rule for the number of electrons in the ring(s). An internal
double bond (i.e. a bond between two atoms in the ring) adds 2 to the
electron count. An external double bond (a bond between a ring atom
and an atom not in that ring) adds 1 to the electron count. An
external double bond between a carbon and a nonaromatic carbon makes
the ring unconditionally nonaromtic. An atom with a lone pair and
no double bonds adds 2 to the electron count.

	
__init__(sys, allow_bad_charges=False)

	Construct from System. AnnotatedSystem is not updated if System is
subsequently modified.

	
__repr__()

	Return repr(self).

	
__weakref__

	list of weak references to the object (if defined)

	
aromatic(atom_or_bond)

	Is atom or bond aromatic

	
degree(atom)

	Number of (non-pseudo) bonds

	
property errors

	List of errors found during system analysis if
allow_bad_charges=True

	
hcount(atom)

	Number of bonded hydrogens

	
hybridization(atom)

	Atom hybridization – 1=sp, 2=sp2, 3=sp3, 4=sp3d, etc.

Equal to 0 for hydrogen and atoms with no bonds, otherwise
max(1, a.degree() + (a.lone_electrons+1)/2 - 1).

	
loneelectrons(atom)

	Number of lone electrons

	
ringbondcount(atom)

	Number of ring bonds

	
valence(atom)

	Sum of bond orders of all (non-pseudo) bonds

	
msys.ApplyDihedralGeometry(a, b, c, r, theta, phi)

	Return the position of atom d with cd length r, bcd angle theta,
and abcd dihedral phi, all in radians.

	
msys.AssignBondOrderAndFormalCharge(system_or_atoms, total_charge=None, compute_resonant_charges=False, *, timeout=60.0)

	Assign bond orders and formal charges to a molecular system.

Determines bond orders and formal charges by preferring neutral
charges and placing negative charges with more electronegative
atoms, under octet constraints and the total system charge
constraint. Assigns the bond orders and formal charges to the system.
Can assign to a subset of atoms of the system, provided these atoms
form complete connected fragments.

	Parameters

	
	system_or_atoms – either a System or a list of Atoms

	total_charge – if not None, integral total charge

	compute_resonant_charges (bool) – compute and store resonant charge
in atom property ‘resonant_charge’ and resonant bond order in
bond property ‘resonant_order’.

	timeout (float) – maximum time allowed, in seconds.
Note: calling this function on a chemically incomplete system,
i.e. just protein backbone, cause msys to hit the timeout.

	
class msys.Atom(_ptr, _id)

	Represents an atom (or pseudoparticle) in a chemical system

	
__contains__(key)

	does atom property key exist?

	
__getitem__(key)

	get atom property key

	
__lt__(that)

	Return self<value.

	
__repr__()

	Return repr(self).

	
__setitem__(key, val)

	set atom property key to val

	
addBond(other)

	create and return a Bond from self to other

	
property aromatic

	

	
property atomic_number

	

	
property bonded_atoms

	Atoms bonded to this atom

	
property bonds

	Bonds connected to this atom

	
property charge

	

	
findBond(other)

	Find the bond between self and Atom other; None if not found

	
property formal_charge

	

	
property fragid

	

	
property mass

	

	
property name

	

	
property nbonds

	number of bonds to this atom

	
property nhydrogens

	number of bonded hydrogens

	
property pos

	position

	
remove()

	remove this Atom from the System

	
property valence

	sum of bond orders

	
property vel

	velocity

	
property vx

	

	
property vy

	

	
property vz

	

	
property x

	

	
property y

	

	
property z

	

	
class msys.Bond(_ptr, _id)

	Represents a bond in a System

	
__contains__(key)

	does custom Bond property exist?

	
__getitem__(key)

	get custom Bond property

	
__lt__(that)

	Return self<value.

	
__repr__()

	Return repr(self).

	
__setitem__(key, val)

	set custom Bond property

	
property atoms

	Atoms in this Bond

	
property first

	first Atom in the bond (the one with lower id)

	
property order

	bond order (int)

	
other(atom)

	atom in bond not the same as given atom

	
remove()

	remove this Bond from the System

	
property second

	second Atom in the bond (the one with higher id)

	
exception msys.BrokenBondsError

	
	
__weakref__

	list of weak references to the object (if defined)

	
msys.CalcAngle(a, b, c)

	Angle in radians of atoms or positions a-b-c.

	
msys.CalcDihedral(a, b, c, d)

	Dihedral angle in radians of atoms or positions a-b-c-d

	
msys.CalcDistance(a, b)

	Distance between atoms or positions a and b

	
msys.CalcPlanarity(pos_or_atoms)

	Planarity of positions or atoms

	
class msys.Chain(_ptr, _id)

	Represents a chain (of Residues) in a System

	
__repr__()

	Return repr(self).

	
addResidue()

	append a new Residue to this Chain and return it

	
property ct

	Return the Ct for this chain

	
property name

	

	
property nresidues

	number of residues in this chain

	
remove()

	remove this Chain from the System

	
property residues

	list of Residues in this Chain

	
property segid

	

	
selectResidue(resid=None, name=None, insertion=None)

	Returns a single Residue with the given resid, name, and/or
insertion code. If no such residue is found, returns None. If
multiple such residues are found within this chain, raises an
exception.

	
msys.CloneSystem(atoms)

	Call System.clone(atoms) using the System from the first atom.

DEPRECATED. Use System.clone directly instead.

	
msys.ComputeTopologicalIds(system)

	Compute and return the topological ids for the atoms or system

	
msys.ConvertFromOEChem(oe_mol, force=False)

	Construct a System from the given OEChem OEMol

	Parameters

	
	oe_mol (oechem.OEMol) – the OEChem molecule to convert

	force (bool) – whether sanity checks should be performed before conversion

	Returns

	System

	Return type

	mol (System)

	
msys.ConvertFromRdkit(rdmol)

	Construct an msys System from an RDMol
:param mol: system
:type mol: rdkit.ROMol

	Returns

	System

Notes

All atoms will be assigned to the same Residue.
Only the first conformer will be used, if any.
There must not be any implicit hydrogens.
Bonds will be kekulized since msys doesn’t maintain aromaticity.
Chiral tags will not be maintained.

	
msys.ConvertToOEChem(mol_or_atoms)

	Construct an OEChem OEMol from the given System

	Parameters

	mol – System or [Atoms]

	Returns

	oechem.OEMol

Notes

If [Atoms] are give, only bonds involving the specified atoms
will be passed to to the OEMol; this is the same behavior
as System.clone(atoms).

	
msys.ConvertToRdkit(mol, sanitize=True)

	Construct an RDKit ROMol from the given System

	Parameters

	
	mol (System) – System

	sanitize (bool) – whether to sanitize the molecule

	Returns

	rdkit.ROMol

Notes: alchemical systems may require sanitize=False

	
msys.CreateParamTable()

	Create a new, empty ParamTable

	
msys.CreateSystem()

	Create a new, empty System

	
class msys.Ct(_ptr, _id)

	Represents a list of Chains in a System

The Ct class exists mainly to provide a separate namespace for chains.
If you merge two systems each of which has a chain A, you probably
want the chains to remain separate. Cts accomplish this.

The Ct class also provides a key-value namespace for assigning
arbitrary properties to Systems.

	
__delitem__(key)

	remove property key

	
__getitem__(key)

	get ct property key

	
__setitem__(key, val)

	set ct property key to val

	
addChain()

	append a new Chain to this Ct and return it

	
append(system)

	Appends atoms and forcefield from system to self. Returns
a list of of the new created atoms in self. Systems must have
identical nonbonded_info.vdw_funct. Does not overwrite the
global cell information in self.

	
property atoms

	list of Atoms in this Ct

	
property bonds

	list of Bonds in this Ct

	
property chains

	list of Chains in this Ct

	
get(key, d=None)

	get ct property key, else d, which defaults to None

	
keys()

	available Ct properties

	
property name

	Name of Ct

	
property natoms

	number of Atoms in the Ct

	
property nchains

	number of Chains in this Ct

	
remove()

	remove this Ct from the System

	
msys.FindDistinctFragments(system, key='graph')

	Find connected sets of atoms with identical topology.

	Parameters

	
	system – System
chemical system

	key – str
one of ‘graph’, ‘inchi’, ‘oechem_smiles’, or list of strings, one per fragment

	Returns

	
	mapping from representative fragment id to ids of fragments
	having identical topology.

	Return type

	dict[int -> [int]]

Notes

Fragments are distinguished according to value given by ‘key’;
if ‘graph’, topologically identical fragments will be considered identical even
if they have different stereochemistry. Choose one of the other options to
include stereochemistry in the fragment disambiguation.

	
msys.FormatDMS(system)

	Return the DMS form of the system as bytes

	
msys.FormatJson(system)

	Json formatted system (EXPERIMENTAL)

	
msys.FormatSDF(mol)

	Return System in sdf format

	
msys.FromSmilesString(smiles, forbid_stereo=True)

	Construct a System from a smiles string.

	Parameters

	
	smiles (str) – the smiles string

	forbid_stereo (bool) – if True, raise exception if smiles has stereo

EXPERIMENTAL. In particular, stereo information in the smiles string
is ignored. Set forbid_stereo=False to permit stereo specifications
to be silently ignored. This flag may be removed at a later date once
stereo support has been added.

	
msys.GetBondsAnglesDihedrals(system)

	Return bonds, angles and dihedrals deduced from bond topology
Returns: dict

	
msys.GetRingSystems(atoms)

	Get ring systems for the given atoms

	
msys.GetSSSR(atoms, all_relevant=False)

	Get smallest set of smallest rings (SSSR) for a system fragment.

The SSSR is in general not unique; the SSSR of a tetrahedron is any
three of its four triangular faces. The set of rings that is the
union of all SSSR’s (all relevant rings) may be obtained by setting
all_relevant to True.

Arguments:
atoms – [msys.Atom, …, msys.Atom] from a single system
all_relevant – bool
Returns: [[msys.Atom, …, msys.Atom], …, [msys.Atom, …, msys.Atom]]

	
class msys.Graph(system_or_atoms, colors=None)

	Represents the chemical topology of a System

Used mainly to implement graph isomorphism; see the match() method

	
__init__(system_or_atoms, colors=None)

	Construct Graph
:param system_or_atoms: System or [Atoms]
:param colors: None, [Int] or Callable

If colors is provided, it is used to specify the vertex color
for each atom in the graph. By default, atomic number is used.
A color may be provided for each atom, or a callable accepting an
Atom as argument. Atoms with color zero are ignored for purposes
of graph matching, and no mapping will be returned for them.

	
__weakref__

	list of weak references to the object (if defined)

	
atoms()

	ordered atoms in graph

	
hash()

	string hash of atoms and bonds in graph

	
static hash_atoms(atoms)

	string hash of specified atoms

	Parameters

	atoms ([msys.Atom]) – list of atoms

	
match(graph)

	Find a graph isomorphism between self and the given Graph.
If no isomorphism could be found, return None; otherwise return
mapping from atoms in this graph to atoms in that graph.

	
matchAll(graph, substructure=False)

	Find all graph isomorphisms between self and the given Graph.
If no isomorphism could be found, return empty list; otherwise return
list of dicts mapping atoms in this graph to atoms in that graph. If
substructure is True, return isomorphisms between self and any subgraph
of the given Graph.

	
size()

	number of atoms in graph

	
msys.GuessHydrogenPositions(atoms)

	Experimental

	
class msys.HydrogenBondFinder(system, donors, acceptors, cutoff=3.5)

	Find candidate hydrogen bonds.

More hbonds will be found than are “realistic”; further filtering
may be performed using the energy attribute of the returned hbonds.
A reasonable filter seems to be around -1.0 (more negative is
stronger); i.e. energies greater than that are more likely than not
to be spurious.

The HydrogenBond class can also be used directly to compute hydrogen
bond geometry and energies by supplying donor, acceptor and
hydrogen positions.

	
__init__(system, donors, acceptors, cutoff=3.5)

	
	Parameters

	
	system (System) – msys system

	donors – selection string, list of ids, or list of Atoms

	acceptors – selection string, list of ids, or list of Atoms

	cutoff (float) – distance cutoff for donor and acceptor

Note

If Atoms are provided, they must be members of system.

	
__weakref__

	list of weak references to the object (if defined)

	
find(pos=None)

	Find hydrogen bonds for the given positions, defaulting to the
current positions of the input system.

	
class msys.InChI(system, DoNotAddH=True, SNon=False, FixedH=True)

	InChI holds an the result of an inchi invocation for a structure

	
__init__(system, DoNotAddH=True, SNon=False, FixedH=True)

	Initialize self. See help(type(self)) for accurate signature.

	
__str__()

	Return str(self).

	
__weakref__

	list of weak references to the object (if defined)

	
property auxinfo

	Auxiliary info

	
property key

	inchi key for this object’s string.

	
property message

	Message returned by inchi during calculation

	
property ok

	Was an inchi computed successfully?

	
property string

	Computed inchi string

	
class msys.IndexedFileLoader(path, idx_path=None)

	Supports random access to multi-structure files

	
__getitem__(index)

	Get structure at given index

	Parameters

	index (int) – 0-based index

	Returns

	msys System

	Return type

	mol (System)

	
__init__(path, idx_path=None)

	Open an indexed file loader, creating an index file if needed.
:param path: file path. File type is inferred from the extension.
:type path: str
:param idx_path: index file path. Defaults to $path.idx.
:type idx_path: str

Note

You need write permission to the location of the index file.

	
__len__()

	number of entries

	
__weakref__

	list of weak references to the object (if defined)

	
property path

	path to source file

	
msys.LineIntersectsTriangle(r, s, a, b, c)

	True if line segment rs intersects triangle abc

	
msys.Load(path, structure_only=False, without_tables=None)

	Infer the file type of path and load the file.

	Parameters

	
	path – if str, a file path or PDB accession code. if int,
an Anton jobid (require ‘yas’ garden module)

	structure_only (bool) – Omit force tables and pseudo atoms

	without_tables (bool) – Omit force tables.

	Returns

	new System

	
msys.LoadDMS(path=None, structure_only=False, buffer=None)

	Load the DMS file at the given path and return a System containing it.
If structure_only is True, only Atoms, Bonds, Residues and Chains will
be loaded, along with the GlobalCell, and no pseudos (atoms with atomic
number less than one) will be loaded.

If the buffer argument is provided, it is expected to hold the contents
of a DMS file, and the path argument will be ignored.

	
msys.LoadMAE(path=None, ignore_unrecognized=False, buffer=None, structure_only=False)

	load the MAE file at the given path and return a System containing it.
Forcefield tables will be created that attempt to match as closely as
possible the force terms in the MAE file; numerical differences are bound
to exist. If ignore_unrecognized is True, ignore unrecognized force
tables.

If the buffer argument is provided, it is expected to hold the contents
of an MAE file, and the path argument will be ignored.

If the contents of the file specified by path, or the contents of buffer,
are recognized as being gzip-compressed, they will be decompressed on
the fly.

If structure_only is True, no forcefield components will be loaded.

	
msys.LoadMany(path, structure_only=False, error_writer=<_io.TextIOWrapper name='<stderr>' mode='w' encoding='UTF-8'>)

	Iterate over structures in a file, if the file type supports
iteration.

for mol in LoadMany(‘input.mol2’): …

If there was an error reading a structure, LoadMany returns None for
that iteration. If error_writer is not None, it’s write() method is
invoked with the contents of the exception message as argument.
error_writer defaults to sys.stderr.

	
msys.LoadMol2(path, multiple=False)

	Load a mol2 file at the given path. If multiple is True, return a list
of Systems, one for each MOLECULE record. Otherwise, return just one
System corresponding to the first MOLECULE record.

	
msys.LoadPDB(path)

	Load a PDB file at the given path and return a System.
No bonds will be created, even if CONECT records are parent.

	
msys.LoadPrmTop(path, structure_only=False)

	Load an Amber7 prmtop file at the given path and return a System.
Coordinates and global cell information are not present in the file.

	
msys.LoadXYZ(path)

	Load an xyz file at the given path. Guesses bonds based on
guessed atomic numbers based on atom name.

	
msys.MatchFragments(mol1, mol2, key='graph')

	construct an atom to atom mapping for all fragments from mol1 to mol2

	Parameters

	
	mol1 – System

	mol2 – System

	key – see FindDistinctFragments

	Returns

	dict[Atom -> Atom] or None

	
msys.NonbondedSchemas()

	available nonbonded schemas for System.addNonbondedFromSchema

	
class msys.Param(_ptr, _id)

	A Param instance is a reference to a row in a ParamTable. Use the
dict-style interface to get and set values in the row. Msys will
take care of converting input values to the type of the corresponding
column, and raise an exception if the conversion cannot be performed.

	
__getitem__(prop)

	get the value of prop

	
__repr__()

	Return repr(self).

	
__setitem__(prop, val)

	update the value of prop with val

	
duplicate()

	create a new entry in the parent parameter table with the
same values as this one, returning it.

	
property id

	id in parent table

	
keys()

	sorted list of available properties

	
property system

	parent System

	
property table

	parent ParamTable

	
class msys.ParamTable(_ptr)

	The ParamTable class is a 2d table, whose rows are indexed by id
and whose columns are properties; see the discussion of properties in
the Overview. A ParamTable is used by TermTables to hold the shared
parameters for its Terms.

	
__eq__(x)

	Return self==value.

	
__hash__()

	Return hash(self).

	
__init__(_ptr)

	Initialize self. See help(type(self)) for accurate signature.

	
__ne__(x)

	Return self!=value.

	
addParam(**kwds)

	add and return a new Param().

If keyword arguments are supplied, they will be assigned to the
newly created Param before returning it.

	
addProp(name, type)

	add a new property of the given type, which must be int,
float, or str.

	
delProp(name)

	removes the property with the given name.

	
find(name, value)

	return the Params with the given value for name

	
property nparams

	number of Params

	
property nprops

	number of properties

	
param(id)

	fetch the Param with the given id

	
property params

	list of all Params in table

	
propType(name)

	type of the property with the given name

	
property props

	names of the properties

	
msys.ParseSDF(text)

	Iterate over blocks in sdf format text.
Accepts normal and gzipped text.

	
msys.ReadCrdCoordinates(mol, path)

	Read coordinates from the given Amber crd file into the given
System.

	
msys.ReadPDBCoordinates(mol, path)

	Read coordinates and box from the given pdb file into the given
System.

	
class msys.Residue(_ptr, _id)

	Represents a residue (group of Atoms) in a System

	
__repr__()

	Return repr(self).

	
addAtom()

	append a new Atom to this Residue and return it

	
property atoms

	list of Atoms in this Residue

	
property center

	return geometric center of positions of atoms in residue

	
property chain

	parent chain

	
property insertion

	insertion code

	
property name

	residue name

	
property natoms

	number of atoms in this residue

	
remove()

	remove this Residue from the System

	
property resid

	the PDB residue identifier

	
selectAtom(name=None)

	Returns a single Atom from this residue with the given name,
or None if no such atom is present. If multiple atoms in the
residue have that name, raise an exception.

	
msys.Save(mol, path, append=False, structure_only=False)

	Save the given system to path, using a file format guessed from the
path name. Not all formats support both append and structure_only options;
see the corresponding SaveXXX functions.

	
msys.SaveDMS(system, path, structure_only=False, unbuffered=False)

	Export the System to a DMS file at the given path.

	
msys.SaveMAE(system, path, with_forcefield=True, append=False)

	Export the System (or list of systems) to an MAE file at the
given path.

	
msys.SaveMol2(system, path, selection='none', append=False, moe=True)

	Export the System to a mol2 file at the given path. You should
probably call AssignBondOrderAndFormalCharge() before exporting
the system.

	Parameters

	
	system (System) – msys system

	path (str) – file name to save to

	selection (str) – msys selection string to restrict to

	append (bool) – if True, don’t clobber path, just append to it

	moe (bool) – output guadinium groups with aromatic bonds so that MOE will read correctly

	
msys.SavePDB(system, path, append=False, reorder=False)

	Export the System to a PDB file at the given path.

	
msys.SerializeMAE(system, with_forcefield=True)

	Return the MAE form of the System as bytes.

	
class msys.SmartsPattern(pattern)

	A class representing a compiled SMARTS pattern

The Msys smarts implementation is similar to that of Daylight smarts
<http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html>, with
support for arbitrarily nested recursive smarts. A few features are
not currently supported; warnings will be generated when these constructs
are used in a smarts pattern.

	Directional bonds; e.g. \ and /; these are treated as single bonds
(i.e. as a - character).

	Chiral specification (@, @@, etc); ignored.

	Implicit hydrogen (h): treated as explicit H.

	Explicit degree (D): treated as bond count X.

	Isotopes: ([12C]): ignored.

	Atom class ([C:6]): ignored.

On the other hand, Msys does support hybridization using the ^ token,
as in OpenBabel:

[c^2] select sp2 aromatic carbon

	
__init__(pattern)

	Initialize with SMARTS pattern

	
__repr__()

	Return repr(self).

	
__weakref__

	list of weak references to the object (if defined)

	
findMatches(annotated_system, atoms=None)

	Return list of lists representing ids of matches of this pattern in
this system, optionally requiring that the first atom match belongs to
the given set of atoms. An AnnotatedSystem must be used here, which can
be constructed from a System after calling
AssignBondOrderAndFormalCharge.

	
match(annotated_system)

	Return True if a match is found anywhere; False otherwise.

This is much faster than checking for an empty result from
findMatches.

	
property natoms

	Number of atoms in the compiled smarts pattern

	
property pattern

	The pattern used to initialize the object

	
property warnings

	Warnings, if any, emitted during compilation

	
class msys.SpatialHash(pos, ids=None, box=None)

	SpatialHash provides an interface for efficient spatial queries
on particle positions.

	
__init__(pos, ids=None, box=None)

	Construct from particle positions. If ids are provided,
they should be a numpy array of type uint32 and specify which
rows of the Nx3 pos array are to be hashed.
If box is provided, it must be a 3x3 array of doubles, and the
search will be performed using periodic boundary conditions.

	
__weakref__

	list of weak references to the object (if defined)

	
findContacts(radius, pos, ids=None, reuse_voxels=False)

	Find pairs of particles within radius of each other.

	Parameters

	
	radius (float) – search radius

	pos (array[float]) – positions

	ids (array[uint]) – particle indices

	reuse_voxels (bool) – assume voxelize(R>=radius) has already been called

	ignore_excluded (bool) – exclude atom pairs in the exclusion table.

	Returns

	Mx1 arrays of ids and distances.

	Return type

	i, j, dists (tuple)

The first array corresponds to ids in the call to findContacts;
the second column to the ids passed to the SpatialHash
constructor.

IMPORTANT: pairs with the same id in the constructor and the call
the findContacts are excluded from the output set. Therefore,
the positions passsed to findContacts should correspond to the
same atom indices as the positions passed to the SpatialHash
constructor.

	
findNearest(k, pos, ids=None)

	Find at most k particles from pos with the smallest minimum
distance to some particle in the spatial hash. If ids is not
provided, it defaults to arange(len(pos)).

	
findWithin(radius, pos, ids=None, reuse_voxels=False)

	Find particles from pos which are within the given radius
of some particle in the spatial hash (i.e. provided in the
SpatialHash constructor). By default, voxelization is performed
at the same resolution as the query radius, but this can be
overridden by calling voxelize() manually, then calling findWithin()
with reuse_voxels=True. pos is expected to be an Nx3 array of
floats. The ids parameter defaults to arange(len(pos)); supply
an array of ids to limit the search to a subset of rows in pos.

	
voxelize(radius)

	Perform voxelization such that findWithin queries with
reuse_voxels=True at a radius equal to or less than the given
radius can be performed accurately. For queries at radius
less than the voxelization, it may be worthwhile to revoxelize
at a smaller radius. Note that, by default, findWithin calls
voxelize with the query radius as argument, so it is not strictly
necessary ever to use this method.

	
class msys.System(_ptr)

	The System class holds all structure and forcefield data
for a single chemical system. Create a new System using
msys.CreateSystem(), or from a file using msys.LoadDMS or
msys.LoadMAE.

A System organizes the information in a DMS file into several
different groups:

	Tables - TermTables are grouped and accessed by name

	cell - the unit cell vectors for the System, in the form of a 3x3
NumPy array.

	nonbonded_info - the NonbondedInfo object describing the type of
nonbonded interactions.

	provenance - a list of Provenance objects describing how the input
file has been processed.

	Auxiliary tables: Everything else in the DMS file that does not
fit into one of the above categories finds its way into an auxiliary table.
Notable denizens of this category include:

	cmap tables

	forcefield (annotation for parameters in the DMS file)

	
__eq__(x)

	Return self==value.

	
__getinitargs__()

	Pickle support (requires cPickle.HIGHEST_PROTOCOL)

	
__hash__()

	Return hash(self).

	
__init__(_ptr)

	Construct from SystemPtr.
Do not invoke directly; use CreateSystem() instead.

	
__ne__(x)

	Return self!=value.

	
__repr__()

	Return repr(self).

	
addAtom()

	add and return a new Atom in its own residue

	
addAtomProp(name, type)

	add a custom atom property with the given name and type.
type should be int, float, or str.

	
addAuxTable(name, table)

	add or replace extra table with the given name.

	
addBondProp(name, type)

	add a custom bond property with the given name and type.
type should be int, float, or str.

	
addChain(ct=4294967295)

	add and return a new Chain.
If no ct is given, the chain will be added to the first ct,
creating one if necessary.

	
addCt()

	add and return a new Ct

	
addNonbondedFromSchema(funct, rule='')

	Add a nonbonded table to the system, and configure the nonbonded
info according to funct and rule. funct must be the name of recognized
nonbonded type. rule is not checked; at some point in the future we
might start requiring that it be one of the valid combining rules for
the specified funct. If nonbonded_info’s vdw_funct and vdw_rule
are empty, they are overridden by the provided values; otherwise, the
corresponding values must agree if funct and rule are not empty.
A nonbonded table is returned.

	
addResidue()

	add and return a new Residue in its own chain

	
addTable(name, natoms, params=None)

	add a table with the given name and number of atoms.
If a table with the same name already exists, it is returned,
otherwise the newly created table is returned. If no ParamTable
params is supplied, a new one is created.

	
addTableFromSchema(type, name=None)

	Add a table to the system if it not already present,
returning it. If optional name field is provided, the table
will be added with the given name; otherwise the name is taken
from the table schema.

	
analyze()

	Assign atom and residue types. This needs to be called
manually only if you create a system from scratch, using
msys.CreateSystem(); in that case, analyze() should be called
before performing any atom selections.

	
append(system)

	Appends atoms and forcefield from system to self. Returns
a list of of the new created atoms in self. Systems must have
identical nonbonded_info.vdw_funct. Overwrites self.global_cell
with system.global_cell only when self.global_cell is all zeros.

	
asCapsule()

	Return a capsule wrapper of the internal SystemPtr.

The capsule holds a bare pointer and therefore must not outlive self.

	
atom(id)

	return the atom with the specified id

	
atomPropType(name)

	type of the given atom property

	
property atom_props

	return the list of custom atom properties.

	
property atoms

	return list of all atoms in the system

	
atomsGroupedBy(prop)

	Return dictionary mapping representative values of the given
atom property to lists of atoms having that property. If the
property does not exist in this system, returns an empty dictionary.

	
atomsel(sel)

	Create and return an atom selection object (Atomsel).
:param sel: str atom selection, or list of GIDs (possibly empty).
:type sel: object

Note

Even if ids are provided, the ids of the selection are in sorted order.

	
auxtable(name)

	auxiliary table with the given name

	
property auxtable_names

	names of the auxiliary tables

	
property auxtables

	all the auxiliary tables

	
bond(id)

	return the bond with the specified id

	
bondPropType(name)

	type of the given bond property

	
property bond_props

	return the list of custom bond properties.

	
property bonds

	return list of all bonds in the system

	
property cell

	The GlobalCell for this System

	
property center

	return geometric center of positions of all atoms

	
chain(id)

	return the chain with the specified id

	
property chains

	return list of all chains in the system

	
clone(sel=None, share_params=False, use_index=False, forbid_broken_bonds=False)

	Clone the System, returning a new System. If selection is
provided, it should be an atom selection string, a list of ids,
or a list of Atoms.

If share_params is True, then ParamTables will be shared between
the old and new systems. By default, copies of the ParamTables
are made, but ParamTables shared _within_ the old system will
also be shared in the new system.

If forbid_broken_bonds is True, an exception will be thrown if the
selected atoms do not include all atoms connected by bonds.

	
coalesceTables()

	Invoke TermTable.coalesce on each table

	
ct(id)

	return the Ct with the specified id

	
property cts

	return list of all cts in the system

	
delAtomProp(name)

	remove the given custom atom property

	
delAtoms(atoms)

	remove the given Atoms from the System

	
delAuxTable(name)

	remove auxiliary table with the given name.

	
delBondProp(name)

	remove the given custom bond property

	
delBonds(bonds)

	remove the given Bonds from the System

	
delChains(chains)

	remove the given Chains from the System

	
delResidues(residues)

	remove the given Residues from the System

	
findBond(a1, a2)

	return the bond between the specified atoms, or None if not found

	
findContactIds(cutoff, ids=None, other=None, pos=None, ignore_excluded=False)

	Find atoms not bonded to each other which are within cutoff of
each other.
If ids is not None, consider only atoms with the given ids. If
other is not None, consider only atom pairs such that one is in ids
and the other is in other. If pos is not None, use pos as positions,
which should be natoms x 3 regardless of the size of ids or other.
pos may be supplied only when there are no deleted atoms in the
structure. If ignore_excluded=True, exclusions from the exclusion
table are used. If ignore_excluded=False, bonds in System.bonds
are still excluded.

Returns a list of (id 1, id 2, distance) tuples for each contact
found.

	
classmethod fromCapsule(cap)

	Construct from a capsule wrapper of a SystemPtr.

	
getCell()

	return copy of unit cell as 3x3 numpy array

	
getPositions()

	get copy of positions as Nx3 array

	
getTable(name)

	Return the TermTable with the given name, or None if not present.

	
getVelocities()

	get copy of velocities as N3x array

	
guessBonds(replace=True, reanalyze=True, periodic=False)

	Guess bond connectivity based on an atomic-number based
atom radius.

Replaces any existing bonds, unless replace=False is specified.

Reanalyzes fragids and atom types unless reanalyze=False is specified.
In that case, you MUST call updateFragids() manually before making
any use of the fragment assignment (fragids will be out of date).

	
hash(sorted=True)

	hash of contents of this system.

The hash is insensitive to provenance and System.name.

	
property name

	The name of the System, taken from the input file name

	
property natoms

	number of atoms

	
property nbonds

	number of bonds

	
property nchains

	number of chains

	
property ncts

	number of Cts

	
property nonbonded_info

	NonbondedInfo for this System

	
property nresidues

	number of residues

	
property positions

	Nx3 list of lists of positions of all atoms

	
property provenance

	return a list of Provenance entries for this system

	
residue(id)

	return the residue with the specified id

	
property residues

	return list of all residues in the system

	
save(path, structure_only=False)

	Write self to path

	Parameters

	
	path (str) – file path

	structure_only (bool) – write only atom information, not forcefield

	Returns

	self

	
select(seltext)

	return a list of Atoms satisfying the given VMD atom selection.

	
selectArr(seltext)

	Return the ids of the Atoms satisfying the given VMD atom
selection as a numpy array of type uint32.

	
selectChain(name=None, segid=None)

	Returns a single Chain with the matching name and/or segid,
or raises an exception if no single such chain is present.

	
selectCt(name=None)

	Return a single Ct with the matching name, or raises an
exception if no single such Ct is present

	
selectIds(seltext, pos=None, box=None)

	Return the ids of the Atoms satisfying the given VMD atom
selection. This can be considerably faster than calling select().

if pos is supplied, it should be an Nx3 numpy array of positions,
where N=self.natoms.

If box is supplied, it should be a 3x3 numpy array of cell vectors,
like System.cell.

	
setCell(cell)

	set unit cell from from 3x3 array

	
setPositions(pos)

	set positions from Nx3 array

	
setVelocities(vel)

	set velocities from Nx3 array

	
sorted()

	Return a clone of the system with atoms reordered based on their
order of appearance in a depth-first traversal of the structure
hierarchy.

	
table(name)

	Get the TermTable with the given name, raising ValueError if
not present.

	
property table_names

	names of the tables in the System

	
property tables

	all the tables in the System

	
property topology

	list of bonded atoms for each atom in the System

	
translate(xyz)

	shift coordinates by given amount

	
updateFragids()

	Find connected sets of atoms, and assign each a 0-based id,
stored in the fragment property of the atom. Return a list of
fragments as a list of lists of atoms.

	
class msys.SystemImporter(system)

	Maps atoms to residues, chains and cts

	
__init__(system)

	construct from system to be constructed

	Parameters

	system (System) – msys System

	
__weakref__

	list of weak references to the object (if defined)

	
addAtom(chain, segid, resnum, resname, aname, insertion='', ct=0)

	Add atom to system

	Returns

	newly added Atom

	
initialize(atoms)

	Process existing atoms in the system

	Parameters

	atoms (list[msys.Atom]) –

Note

can be called multiple times; each time clears the internal
tables so that subsequent atoms do not share residues, chains,
or cts with previously added atoms.

	
property system

	input system

	
msys.TableSchemas()

	available schemas for System.addTableFromSchema

	
class msys.Term(_ptr, _id)

	A Term is a handle for an entry in a TermTable.

The properties of a Term can be read and updated using a dictionary
like interface. Both “term properties” and properties from the
ParamTable are accessed through the same interface. To add or
remove properties, use the provided methods in the TermTable or
ParamTable instance. If a Term’s param is shared by another
Term in any other TermTable, Msys will take care of providing
the Term with its own Param containing a copy of the original
properties before applying the changes. However, if you a modify a
Param through its dictionary interface, you will affect all Terms
that happen to share that Param:

fetch the stretch_harm table
table = mol.table('stretch_harm')
update the properties of just the first Term
table.term(0)['fc'] = 320
update the properties of all terms that use this param!
table.term(0).param['fc'] = 320

	
__getitem__(prop)

	get the value of property prop

	
__repr__()

	Return repr(self).

	
__setitem__(prop, val)

	set the value of property prop

	
property atoms

	list of Atoms for this Term

	
property id

	id of this term in its TermTable

	
keys()

	union of table.params.props and table.term_props

	
property param

	The Param corresponding to this Term’s parameters

	
remove()

	remove the given Term from its TermTable

	
property system

	parent System of parent TermTable

	
property table

	parent TermTable

	
class msys.TermTable(_ptr)

	Each TermTable is intended to describe a specific type of interaction,
e.g. stretch, angle, Lennard-Jones, constraint_hoh, etc. A TermTable
has an arity (given by the natoms property) which specifies how many
atoms are involved in each interaction: one for nonbonded terms, two
for stretch terms, etc. Each interaction instance is described by
a Term. Each Term references the appropriate number of atoms,
and exactly one Param, which lives in a ParamTable owned (or possible
shared) by the TermTable.

The functional form described by a TermTable is not part of msys; all
msys does is represent the forcefield parameters in a generic way.

	
__eq__(x)

	Return self==value.

	
__hash__()

	Return hash(self).

	
__init__(_ptr)

	Construct from TermTablePtr.
Do not invoke directly; use System.addTable or System.table instead

	
__ne__(x)

	Return self!=value.

	
__repr__()

	Return repr(self).

	
addTerm(atoms, param=None)

	Add a Term to the table, with given initial param. The atoms
list must have natoms elements, and each Atom must belong to the
same System as the TermTable. If param is not None, it must
belong to the ParamTable held by the TermTable.

	
addTermProp(name, type)

	add a custom Term property of the given type

	
property category

	A string describing what kind of TermTable this is.
Possibilities are: bond, constraint, virtual, polar,
nonbonded, and exclusion.

	
coalesce()

	Reassign param for each Term in this Table to a member
of the distinct set of Params used by those Terms.

	
count_overrides()

	return the number of pairwise nonbonded interactions which
are affected by the overrides in the given term table.

	
delTermProp(name)

	remove the custom Term property

	
delTermsWithAtom(atom)

	remove all terms whose atoms list contains the given Atom

	
findExact(atoms)

	return the terms that contain precisely the given atoms in the
given order.

	
findWithAll(atoms)

	return the terms that contain all the given atoms in any order

	
findWithAny(atoms)

	return the terms that contain at least one of the given atoms

	
findWithOnly(atoms)

	return the terms that contain only the given atoms

	
getOverride(pi, pj)

	get override for given pair of params, or None if not present.

	
hasTerm(id)

	Does a Term with the given id exist in the table?

	
property name

	name of this table

	
property natoms

	number of atoms in each term

	
property noverrides

	number of parameter overrides

	
property nterms

	number of terms

	
property override_params

	parameter table containing override values

	
overrides()

	return a mapping from pairs of Params in self.params to a Param
in self.override_params.

	
property params

	The ParamTable for terms in this table.

	
property props

	Table properties

	
remove()

	Remove this table from its parent system

	
replaceWithSortedTerms()

	Replace table in self.system with a version of self that has terms sorted
by atom ids.

	
setOverride(pi, pj, op)

	override the interaction between params pi and pj with the
interaction given by op. pi and pj must be Params from self.params;
op must be a param from self.override_params, or None to remove
the override.

	
property system

	The System whose atoms are referenced by this table.

	
term(id)

	returns the Term in the table with the given id

	
termPropType(name)

	type of the given Term property

	
property term_props

	names of the custom properties

	
property terms

	returns a list of all the Terms in the table

The Atomsel class

	
class msys.atomsel.Atomsel(ptr, seltext)

	Supports alignment of molecular structures

	
__init__(ptr, seltext)

	don’t use directly - use System.atomsel()

	
__len__()

	number of selected atoms

	
__repr__()

	Return repr(self).

	
__str__()

	Return str(self).

	
alignCoordinates(other)

	If other is an Atomsel instance, align the coordinates of
other’s System with self. If other is a numpy array, align
the array with self, using corresponding indices.

In either case, return the aligned RMSD.

	
alignedRMSD(other)

	Return the aligned rmsd to other.

	
currentRMSD(other)

	compute RMS distance to other object, which may be
Atomsel or an array of positions. In either it must be
the case that len(other) equals len(self) or len(self.system)

	
property ids

	ids of selected atoms in the parent system

	
raw_alignment(other)

	Compute alignment to other object. Compute and return
aligned rmsd, and rotational and translational transformations.

	
property system

	parent system

Dealing with duplicate parameters

After performing various modifications to a TermTable, you may find
that the associated ParamTable contains many entries whose values
are all identical. The redundant parameters can be removed by first
“coalescing” the parameter assignments of each Term to a set of distinct
Params, then cloning the System. When a System is cloned, only the
Params which are referenced by at least one Term in the TermTable are
copied to the new System:

import msys
mol=msys.CreateSystem()
a1=mol.addAtom()
a2=mol.addAtom()
a3=mol.addAtom()
table = mol.addTableFromSchema('stretch_harm')
p1=table.params.addParam()
p1['fc']=320
p1['r0']=1.0
t1=table.addTerm([a1,a2], p1)
t2=table.addTerm([a1,a3], p1)

At this point we have two terms and one param. Suppose we ignore the
fact that t1 and t2 share a Param, and we just update their properties
to the same value:

t1['r0']=1.2
t2['r0']=1.2

Now we have two Params, because when we updated t1, we created a second
Param that was unshared by t2. When we updated t2, p1 was unshared, so
no duplicate was made.
assert table.params.nparams==2

But we could get by with only a single Param. Let's do that:
mol.coalesceTables()

At this point t1 and t2 are sharing a Param, and the other one is unused:
assert t1.param==t2.param
assert table.params.nparams==2
assert table.nterms==2

When we clone, the unused params are not copied to the new system.
mol2=mol.clone()
assert mol2.table('stretch_harm').params.nparams==1

	
class msys.TermTable(_ptr)

	Each TermTable is intended to describe a specific type of interaction,
e.g. stretch, angle, Lennard-Jones, constraint_hoh, etc. A TermTable
has an arity (given by the natoms property) which specifies how many
atoms are involved in each interaction: one for nonbonded terms, two
for stretch terms, etc. Each interaction instance is described by
a Term. Each Term references the appropriate number of atoms,
and exactly one Param, which lives in a ParamTable owned (or possible
shared) by the TermTable.

The functional form described by a TermTable is not part of msys; all
msys does is represent the forcefield parameters in a generic way.

	
addTerm(atoms, param=None)

	Add a Term to the table, with given initial param. The atoms
list must have natoms elements, and each Atom must belong to the
same System as the TermTable. If param is not None, it must
belong to the ParamTable held by the TermTable.

	
addTermProp(name, type)

	add a custom Term property of the given type

	
property category

	A string describing what kind of TermTable this is.
Possibilities are: bond, constraint, virtual, polar,
nonbonded, and exclusion.

	
coalesce()

	Reassign param for each Term in this Table to a member
of the distinct set of Params used by those Terms.

	
count_overrides()

	return the number of pairwise nonbonded interactions which
are affected by the overrides in the given term table.

	
delTermProp(name)

	remove the custom Term property

	
delTermsWithAtom(atom)

	remove all terms whose atoms list contains the given Atom

	
findExact(atoms)

	return the terms that contain precisely the given atoms in the
given order.

	
findWithAll(atoms)

	return the terms that contain all the given atoms in any order

	
findWithAny(atoms)

	return the terms that contain at least one of the given atoms

	
findWithOnly(atoms)

	return the terms that contain only the given atoms

	
getOverride(pi, pj)

	get override for given pair of params, or None if not present.

	
hasTerm(id)

	Does a Term with the given id exist in the table?

	
property name

	name of this table

	
property natoms

	number of atoms in each term

	
property noverrides

	number of parameter overrides

	
property nterms

	number of terms

	
property override_params

	parameter table containing override values

	
overrides()

	return a mapping from pairs of Params in self.params to a Param
in self.override_params.

	
property params

	The ParamTable for terms in this table.

	
property props

	Table properties

	
remove()

	Remove this table from its parent system

	
replaceWithSortedTerms()

	Replace table in self.system with a version of self that has terms sorted
by atom ids.

	
setOverride(pi, pj, op)

	override the interaction between params pi and pj with the
interaction given by op. pi and pj must be Params from self.params;
op must be a param from self.override_params, or None to remove
the override.

	
property system

	The System whose atoms are referenced by this table.

	
term(id)

	returns the Term in the table with the given id

	
termPropType(name)

	type of the given Term property

	
property term_props

	names of the custom properties

	
property terms

	returns a list of all the Terms in the table

Sharing ParamTables

Forcefield developers will (we hope!) appreciate the ability for Msys to
parameterize multiple TermTables from potentially different Systems
using a single ParamTable instance. Normally, when a System is loaded
from an input file, or a TermTable is created using the scripting interface,
each TermTable refer to a ParamTable of its very own, and no other
TermTable can or will reference it. However, at the time that a TermTable
is created, a ParamTable can be provided which will be used to hold
the Param entries for the Terms in the TermTable:

create two independent systems
m1=msys.CreateSystem()
m2=msys.CreateSystem()

add some atoms
m1.addAtom()
m2.addAtom()
m2.addAtom()

create a free-standing ParamTable and add some Params
params=msys.CreateParamTable()
p1=params.addParam()
p2=params.addParam()

create a table in system 1 which uses the free ParamTable
table1=m1.addTable("table", 1, params)

no other TermTable is using the ParamTable
assert not params.shared

create a table in system 2 which also uses the free ParamTable
table2=m2.addTable("table", 1, params)

now the ParamTable is shared
assert params.shared
assert table1.params == table2.params

Add some terms to each table
t1=table1.addTerm(m1.atoms, p2)
t2=table2.addTerm(m2.atoms[1:], p2)

assert t1.param == t2.param
assert t2.param == p2

modifications to the the original table and its params are propagated
to each table
params.addProp("fc", float)
p1['fc']=32
p2['fc']=42
assert t1['fc']==42
assert t2['fc']==42

p1 is shared by multiple TermTables, but within a TermTable, p1 is not
shared. Modifications to t1['fc'] will affect t2!
t1['fc'] = 52
assert t2['fc'] == 52

Pfx

A high level interface for wrapping, centering, and alignment.

This module provides simple, yet performant methods for manipulating
trajectories of systems with connected atoms and periodic boundary
conditions.

	
msys.pfx.aligned_rmsd(X, Y, weight=None) → mat, rmsd

	Compute the matrix aligning Y onto X, optionally with weights. Return the matrix and the rmsd.

	
msys.pfx.inverse_3x3(A) → Ainv

	

	
msys.pfx.svd_3x3(A) → U, w, V

	svd_3x3 computes the singular value decomposition of the 3x3 matrix A.
The result is always calculated and returned in double precision.

What pfx does

Pfx can be configured to perform a number of tasks related to
postprocessing of trajectories of molecular systems. There are four
main issues which Pfx is designed to deal with:

	Fixing bonds. If two atoms with a bond between them are found in
different periodic images, one of them must be shifted by some integer
linear combination of the unit cell vectors so that the distance
between them is no greater than half a unit cell vector along each
cell vector direction. When there are multiple atoms bonded together,
the bond fixing operation must be applied to the bonds composing this
connected component in topologically sorted order.

	Gluing components. Some molecular systems, such as multimeric
ion channels, contain components which are not explicitly bonded
to each other, but which do stay together during the simulation and
should therefore be kept together during postprocessing. For each
set of glued components, Pfx finds the transformations which
minimize the square distance between the centers of each component.

	Centering and alignment. Pfx can either center a selected set
of atoms on the origin, or align a selected set to a reference
structure.

	Wrapping components. Any of the preceeding operations could place
the center of a connected set of atoms outside the unit cell
centered at the origin. Pfx shifts each connected component to
bring it as close to the origin as possible, which maintaining any
glued components. Importantly, if an alignment has been performed
in the previous step, then the rotational part of the alignment
transformation must be applied to the unit cell before performing
the wrapping. Another subtlety is that when alignemnt has been
performed, the wrapping should be performed about the center of the
reference selection, not necessarily the origin. Otherwise, if the
reference structure is far from the origin, wrapping could undo the
alignment.

The main work of pfx is does in the apply method. The arguments
to apply are a coordinate set and, optionally, a periodic cell and/or
a set of velocities. Here’s what happens when you call apply, assuming
that both the periodic cell and the velocities have been provided:

	Fix bonds.

	Glue components.

	Translate the entire system to bring the centered or aligned atoms to
the origin.

	Compute a rotational transformation which aligns the system to the
centered reference structure.

	Apply the rotation to the input positions, unit cel, and velocities.

	Wrap connected and glued components.

	Shift the entire system to the center of the reference structure.

Specifying topology

A Pfx instance is constructed from a bond topology. The bond topology
indicates both how many atoms are in the molecular system as well as
which atoms are bonded together. Pfx analyzes this topology to
find the connected components comprising the system. If the fixbonds
argument is True, then Pfx also computes and caches a topologically
sorted list of bonds from the topology, so that the bond fixing step
can be performed efficiently.

Specifying glue

The glue method of Pfx lets you specify atoms which should be kept
together even if there is no explicit bond between them. Suppose the
ids of all the protein atoms in a multimeric protein are passed as the
argument to glue. Pfx first finds the set of connected components
which overlap with the selection. In the glue components step, the
centers of these components will be brought together. Moreover, in the
wrap components step, all the protein atoms will be treated as a single
component for the purpose of wrapping.

Suppose now that only one residue from each monomer of a multicomponent
protein is included in a glue selection. The same set of connected
components will be kept together as before, when the entire protein was
glued; however, the centers of the connected components will be computed
from just the glued residue in each monomer, rather than from all atoms
of each monomer. The wrap components step will be unchanged.

The glue method can be called multiple times on the same Pfx instance.
It is perfectly valid for glue selections in different invocations to
overlap.

Performing both centering and alignment

When viewing trajectories, chemists often want to specify both “center”
and “fit” selections. But what does this mean? If you center on, say,
atoms 1-10, and align atoms 10-20, one operation will undo the other.
The only sensible approach seems to be to apply the “center” specification
to whatever is being used for the reference structure, and then use the
“fit” selection to align non-reference frames to that selection.

What about periodicfix?

The algorithms in this module are essentially the same as those in
periodicfix. So why a new module? Here are some reasons:

	Periodicfix isn’t consistent about its use of float and double, and
does a lot of interconversion. This makes it slow.

	Periodicfix doesn’t have both single and double precision versions
available from Python. This one does.

	Periodicfix makes you specify weights to align a subset of atoms.
Pfx doesn’t use weights; or, if you like, the weights must be zero
or one. In practice it’s been found that that’s all anyone needs.
Having to specify weights is cumbersome. If someone really wants to
have weight support in pfx we can add it some day.

	Periodicfix has separate topology and fragment wrapper types, which
make the Python interface more cumbersome. Pfx has just one type.

	Periodicfix has accreted additional functionality which has nothing
to do with periodic images or alignment, including contact finding
and a hydrogen bond energy function.

	The svd in periodicfix is greatly inferior to the one here. Yes,
it would be easy replace the one in periodicfix with this one.

Molfile

Structure and coordinate file manipulation library.

Reading a structure file:

reader = molfile.mae.read('/path/to/foo.mae')

Iterating through the frames in a file:

for frame in molfile.dtr.read('/path/to/foo.dtr').frames():
 function(frame.pos, frame.vel, frame.time, frame.box)

Random access to frames (only dtr files support this currently):

f27 = molfile.dtr.read('/path/to/foo.dtr').frame(27) # 0-based index

Write a trajectory to a frameset (dtr):

f = msys.molfile.Frame(natoms)
w = msys.molfile.dtr.write('output.dtr', natoms=natoms)
for i, xyz in enumerate(xyzs):
 f.pos[:] = xyz
 f.time = i
 w.frame(f)
w.close()

Convert an mae file to a pdb file:

input=molfile.mae.read('foo.mae')
output=molfile.pdb.write('foo.pdb', atoms=input.atoms)
output.frame(input.frames().next())
output.close()

Write every 10th frame in a dtr to a trr:

input=molfile.dtr.read('big.dtr')
output=molfile.trr.write('out.trr, natoms=input.natoms)
for i in range(0,input.nframes, 10):
 output.frame(input.frame(i))
output.close()

Write a frame with a specified set of gids:

f = molfile.Frame(natoms, with_gids=True
f.gid[:] = my_gids
f.pos[:] = my_positions
w.frame(f)

Read the raw fields from a frameset (dtr):

dtr = molfile.DtrReader('input.dtr') # also works for stk
for i in range(dtr.nframes):
 f = dtr.frame(i)
 keyvals = dict()
 frame = dtr.frame(i, keyvals=keyvals)
 ## use data in keyvals

Write raw fields to a frameset (dtr):

dtr = molfile.DtrWriter('output.dtr', natoms=natoms)
keyvals = dict(s = "a string",
 f = positions.flatten(), # must be 1d arrays
 i = numpy.array([1,2,3]),
)
dtr.append(time = my_time, keyvals = keyvals)

	
class msys.molfile.Plugin

	Interface to readers and writers

	
property can_read

	

	
property can_write

	

	
property filename_extensions

	

	
property name

	

	
property prettyname

	

	
read((Plugin)arg1, (str)path[, (bool)double_precision=False]) → Reader :

	Open a file for reading

	
property version

	

	
write((Plugin)arg1, (str)path[, (object)atoms=None[, (object)natoms=None]]) → Writer :

	write(path,atoms=None,natoms=None)

	
class msys.molfile.DtrReader

	
	
fileinfo((DtrReader)arg1, (int)arg2) → tuple :

	fileinfo(index) -> path, time, offset, framesize, first, last, filesize, dtrpath, dtrsize
file contains frames [first, last)

	
frame((DtrReader)arg1, (int)index[, (object)bytes=None[, (object)keyvals=None]]) → object :

	frame(index, bytes=None, keyvals=None) -> Frame
Read bytes from disk if bytes are not provided
If keyvals is not None, it should be a dict, and raw data from
the frame will be provided.

	
frameset_is_compact((DtrReader)arg1, (int)arg2) → bool

	

	
frameset_path((DtrReader)arg1, (int)arg2) → str

	

	
frameset_size((DtrReader)arg1, (int)arg2) → int

	

	
static fromTimekeys((str)arg1, (list)arg2, (list)arg3) → DtrReader

	

	
index_ge((DtrReader)arg1, (float)arg2) → int

	

	
index_gt((DtrReader)arg1, (float)arg2) → int

	

	
index_le((DtrReader)arg1, (float)arg2) → int

	

	
index_lt((DtrReader)arg1, (float)arg2) → int

	

	
index_near((DtrReader)arg1, (float)arg2) → int

	

	
keyvals((DtrReader)arg1, (int)arg2) → dict :

	keyvals(index) -> dict()
Read raw fields from frame.

	
property metadata

	

	
property natoms

	

	
property nframes

	

	
property nframesets

	

	
property path

	

	
reload((DtrReader)arg1) → int :

	reload() -> number of timekeys reloaded – reload frames in the dtr/stk

	
times((DtrReader)arg1) → object

	

	
total_bytes((DtrReader)arg1) → int

	

	
class msys.molfile.Frame

	
	
property box

	

	
property dpos

	

	
property dvel

	

	
property extended_energy

	

	
property fpos

	

	
property fvel

	

	
property kinetic_energy

	

	
moveby((Frame)arg1, (float)x, (float)y, (float)z) → None

	

	
property pos

	

	
property position

	

	
property potential_energy

	

	
property pressure

	

	
property pressure_tensor

	

	
select((Frame)arg1, (object)indices) → Frame

	

	
property temperature

	

	
property time

	

	
property total_energy

	

	
property vel

	

	
property velocity

	

	
property virial_tensor

	

	
class msys.molfile.Atom

	
	
addbond()

	addbond(atom) – add atom to self.bonds and self to atom.bonds

	
altloc

	segment name

	
anum

	atomic number

	
bfactor

	temperature factor

	
bonds

	bonded atoms

	
chain

	chain name

	
charge

	

	
delbond()

	delbond(atom) – remove atom from self.bonds and self from atom.bonds

	
getbondorder()

	getbondorder(atom) – bond order for bond with given atom.

	
insertion

	segment name

	
mass

	mass in amu

	
name

	atom name

	
occupancy

	

	
radius

	vdw radius

	
resid

	residue id

	
resname

	residue name

	
segid

	segment name

	
setbondorder()

	setbondorder(atom,val) – set bond order for bond with given atom.

	
type

	atom type

	
class msys.molfile.SeqFile

	Read csv-like files with column names in the first row

	
class Reader(path)

	
	
at_time_near(time)

	

	
frame(n)

	

	
frames()

	

	
get_prop(prop)

	

	
property natoms

	

	
property nframes

	

	
filename_extensions = 'seq'

	

	
name = 'seq'

	

	
classmethod read(path)

	Open an eneseq file for reading

	
class msys.molfile.Grid(data, name='', axis=None, origin=None)

	
	
property axis

	

	
property data

	

	
property name

	

	
property origin

	

Reader

	
class msys.molfile.Reader

	Structure or trajectory open for reading

A Reader is a handle to an open file. Use the atoms member to fetch the
atomic structure from the file, assuming it exists. To access frames,
there are two methods.

	
frames()

	returns a FrameIter object for iteration over frames. FrameIter
has two methods: the usual next() method which returns a Frame,
and skip(n=1), which advances the iterator by n frames without
(necessarily) reading anything. FrameIter is a very poor iterator:
once a frame has been read or skipped, it can’t be loaded again;
you have use a brand new Reader.

	
frame(n)

	returns the nth frame (0-based index). Currently only the dtr
plugin supports this method.

	
grid(n)

	return the nth grid. For dx and ccp4 files.

	
at_time_ge((Reader)arg1, (float)time) → Frame

	

	
at_time_gt((Reader)arg1, (float)time) → Frame

	

	
at_time_le((Reader)arg1, (float)time) → Frame

	

	
at_time_lt((Reader)arg1, (float)time) → Frame

	

	
at_time_near((Reader)arg1, (float)time) → Frame

	

	
property atoms

	list of Atoms

	
property bondorders

	list of bond orders

	
frame((Reader)arg1, (int)arg2) → Frame

	

	
grid_data((Reader)arg1, (int)arg2, (object)arg3) → None

	

	
grid_meta((Reader)arg1, (int)arg2) → object

	

	
property has_velocities

	reads velocities

	
property natoms

	number of atoms

	
next((Reader)arg1) → Frame :

	Return the next frame

	
property nframes

	number of frames

	
property ngrids

	number of grids

	
reopen((Reader)arg1) → Reader :

	reopen file for reading

	
skip((Reader)arg1) → None :

	Skip the next frame

	
property times

	all times for frames in trajectory

	
property topology

	bond adjacency graph

Writer

	
class msys.molfile.Writer

	Structure or trajectory open for writing

Writers are initialized with a path and either an array of Atoms or
an atom count. If the Writer supports structure writing, Atoms must
be provided; if the Writer only writes frames, either one will do.

	
frame(f)

	If the writer supports frame writing, appends frame f to the end
of the file.

	
grid(g)

	If the writer supports grid writing, writes Grid g to the file,
where g is an instance of molfile.Grid, either returned from
reader.grid(n) or created from scratch.

	
close()

	Invoked when the Writer goes out of scope, but it’s not a bad
idea to invoke it explicitly.

	
close((Writer)arg1) → None

	

	
frame((Writer)arg1, (Frame)arg2) → Writer

	

	
sync((Writer)arg1) → None

	

	
truncate((Writer)arg1, (float)arg2) → bool

	

AnnotatedSystem

	
class msys.AnnotatedSystem(sys, allow_bad_charges=False)

	System that has been annotated with additional chemical information

The AnnotatedSystem class provides chemical annotation useful
primarily for evaluating smarts patterns. The system is expected to
already have have chemical reasonable bond orders and formal charges,
and to have no missing atoms (e.g. hydrogens). If these criteria
cannot be met, set allow_bad_charges=True in the constructor to bypass
these checks; in that case the AnnotatedSystem can still be used to
evaluate smarts patterns, but patterns making use of the electronic
state of the system (e.g. aromaticity, hybridization, etc.) will
not be correct (the system will appear to be entirely aliphatic).
You may also use the AssignBondOrderAndFormalCharge function to
assign reasonable bond orders and formal charges, assuming there
are no missing atoms.

The AnnotatedSystem defines a model for aromaticity. First, the SSSR
(smallest set of smallest rings) is determined. Next, rings which
share bonds are detected and grouped into ring systems. Rings are
initially marked as nonaromatic. If the ring system taken as a whole
is deemed to be aromatic, then all rings within it are aromatic as
well; otherwise, individual rings are checked for aromaticity. Rings
are checked in this fashion until no new rings are found to be aromatic.

A ring system is deemed to be aromatic if it satisfies Huckel’s
4N+2 rule for the number of electrons in the ring(s). An internal
double bond (i.e. a bond between two atoms in the ring) adds 2 to the
electron count. An external double bond (a bond between a ring atom
and an atom not in that ring) adds 1 to the electron count. An
external double bond between a carbon and a nonaromatic carbon makes
the ring unconditionally nonaromtic. An atom with a lone pair and
no double bonds adds 2 to the electron count.

	
aromatic(atom_or_bond)

	Is atom or bond aromatic

	
degree(atom)

	Number of (non-pseudo) bonds

	
property errors

	List of errors found during system analysis if
allow_bad_charges=True

	
hcount(atom)

	Number of bonded hydrogens

	
hybridization(atom)

	Atom hybridization – 1=sp, 2=sp2, 3=sp3, 4=sp3d, etc.

Equal to 0 for hydrogen and atoms with no bonds, otherwise
max(1, a.degree() + (a.lone_electrons+1)/2 - 1).

	
loneelectrons(atom)

	Number of lone electrons

	
ringbondcount(atom)

	Number of ring bonds

	
valence(atom)

	Sum of bond orders of all (non-pseudo) bonds

SmartsPattern

	
class msys.SmartsPattern(pattern)

	A class representing a compiled SMARTS pattern

The Msys smarts implementation is similar to that of Daylight smarts
<http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html>, with
support for arbitrarily nested recursive smarts. A few features are
not currently supported; warnings will be generated when these constructs
are used in a smarts pattern.

	Directional bonds; e.g. \ and /; these are treated as single bonds
(i.e. as a - character).

	Chiral specification (@, @@, etc); ignored.

	Implicit hydrogen (h): treated as explicit H.

	Explicit degree (D): treated as bond count X.

	Isotopes: ([12C]): ignored.

	Atom class ([C:6]): ignored.

On the other hand, Msys does support hybridization using the ^ token,
as in OpenBabel:

[c^2] select sp2 aromatic carbon

	
findMatches(annotated_system, atoms=None)

	Return list of lists representing ids of matches of this pattern in
this system, optionally requiring that the first atom match belongs to
the given set of atoms. An AnnotatedSystem must be used here, which can
be constructed from a System after calling
AssignBondOrderAndFormalCharge.

	
match(annotated_system)

	Return True if a match is found anywhere; False otherwise.

This is much faster than checking for an empty result from
findMatches.

	
property natoms

	Number of atoms in the compiled smarts pattern

	
property pattern

	The pattern used to initialize the object

	
property warnings

	Warnings, if any, emitted during compilation

Nonbonded parameters

Nonbonded parameters for particles in Msys are handled as follows.
A System may have at most one TermTable whose name is “nonbonded” and
whose category is also “nonbonded”. The ParamTable for the nonbonded
table, not surprisingly, holds the nonbonded parameters for all the atoms.
Atoms are assigned a nonbonded type by creating Terms in the nonbonded
TermTable. There should be exactly one Term for each Atom, and
each Atom should be represented by exactly one Term.

The System class has a method called addNonbondedFromSchema which is
a shortcut for creating a nonbonded table of a particular type. The argument
to addNonbondedFromSchema will be the vdw_funct that appears in
the nonbonded_info field of the System. The following vdw_funct
values are currently supported:

	vdw_12_6 : parameters sigma, epsilon

	vdw_exp_6 : parameters alpha, epsilon, rmin

	vdw_exp_6s : parameters sigma, epsilon, lne

When a System is created by loading a DMS or MAE file, a nonbonded
table will be created if and only if the input file contains nonbonded
information. When saving a System to a DMS file, Msys checks that
there is at most one nonbonded table, and if one exists, ensures that
every Atom is found in exactly one Term.

Alternative nonbonded tables

Starting with version 1.6.0, Msys supports export to DMS files of
systems containing nonbonded tables not named “nonbonded”. Any
number of such tables may be created, either with or without the
traditional “nonbonded” table”:

m=msys.CreateSystem()
a=m.addAtom()
disp = m.addTable('nonbonded_dispersion', 1)
repl = m.addTable('nonbonded_repulsion', 1)
elec = m.addTable('nonbonded_charge', 1)
for t in disp, repl, elec:
 t.category='nonbonded'
 p=t.params.addParam()
 t.addTerm([a],p)

disp.params.addProp('foo', float)
repl.params.addProp('bar', float)
elec.params.addProp('charge', float)
m.nonbonded_info.vdw_funct = "disp_repl_charge"
m.nonbonded_info.vdw_rule = "geom/geom/geom"

The vdw_funct attribute should reflect the nature of the nonbonded
schemas that are present in the system.

Note that if there is no table named “nonbonded”, then the particle table
in the DMS file will not contain an nbtype column.

Overriding nonbonded interactions

Nonbonded interactions between particles are usually calculated by looking
up the nonbonded parameters (e.g., charge, sigma, epsilon) of the two
interacting particles, performing some sort of combining operation on
those parameters (e.g., geometric mean of the charge, arithmetic mean
of the sigma), then using those values in the functional form of the
interaction.

The DMS and MAE file formats allow one to specify nonbonded types whose
combined values are to be taken from a table, rather than computed
according to a combining rule. In Msys, overrides to the parameters
in a TermTable are stored as a mapping from pairs of entries in the
params to a entry in the override_params ParamTable. Pairs
of Params are stored such that the id of the first Param is
less than or equal to the id of the second Param; hence, there
are no redundant or conflicting overrides: if parameters i and j
have an override, then parameters j and i must be considered to
have the same override.

Alchemical nonbonded interactions

DMS files use a table called alchemical_particle to indicate which
particles have alchemical nonbonded states, and the parameters for
those states. Msys represents the information in that table with
a TermTable called alchemical_nonbonded. This table will share
a ParamTable with the regular nonbonded table, but will contain
Terms only for the alchemical particles. The parameter for each
Term in alchemical_nonbonded will correspond to the B state of
the term’s particle. Additional per-particle information, such
as chargeB, chargeC, or moiety, will appear as term properties
for the particles.

NonbondedInfo

	
class msys.NonbondedInfo

	
	
property es_funct

	Name of the electrostatic functional form

	
property vdw_funct

	Name of the vdw functional form; e.g., ‘vdw_12_6’

	
property vdw_rule

	Nonbonded combining rule; e.g., ‘arithmetic/geometric’

Command line tools

Msys is packaged with a set of command line tools that wrap functionality
present in the Python interface.

Conversion

mae2dms

dms2mae

Information

dms-version

dms-info

dms-dump

dms-diff

Basic Manipulation

dms-fix-mass

dms-frame

dms-reorder-atoms

dms-select

dms-sequence

	
msys.sequence.Sequences(system_or_chain, distinct=True)

	return list of sequences, one for each chain, for the given input.
The sequence will be returned as a string, with characters corresponding
to the 1-letter sequence codes. If a Chain is provided instead of a
System, only one sequence will be returned.

If distinct is True, only distinct sequences will be returned.

dms-set

	
msys.update.Update(mol, atoms, key, val)

	update the system by setting properties corresponding to key to the
value val. key can take the following forms:
1) foo – same as atom.foo
2) atom.foo – atom property foo
3) residue.foo – residue property foo
4) chain.foo – chain property foo
5) table.foo – property foo of all terms
6) box.foo – where foo is x, y, z, or d (sets all three)

Structure building

dms-grease

dms-grease input.dms lipid.dms output.dms [options]

Tile a lipid bilayer around a solute.

dms-grease builds a new chemical system consisting of the input system
plus a lipid bilayer constructed by tiling lipid.dms in the x-y plane.
If the input.dms is given as “-“, then a pure membrane will be built.

An error will be encountered if only one of input.dms and lipid.dms
have forcefield information; this is because Msys refuses to write DMS
files that have only partial information for the nonbonded atom types.
If you don’t have forcefield information for one of the input files,
use the –structure-only option to ignore the forcefield information
in the one that does.

The global cell of the new system will be orthorhombic and have x and
y dimensions given by the specified size of the membrane, and z dimension
given by the input structure or the lipid membrane template, whichever is
greater.

	
msys.grease.Grease(mol, tile, thickness=0.0, xsize=None, ysize=None, ctname='grease', verbose=True, square=False)

	Build and return a new system consisting of mol plus lipid bilayer.
Tile is the lipid bilayer system to replicate.

If no solute is provided, the solute is treated as a point at the
origin. thickness specifies the amount of solute added along the x
and y axis. The dimensions of the bilayer can also be given explicitly
with dimensions. If square is true, the box size will be expanded to
the size of the longest dimension.

Lipids will be created in a new Ct. Their chain names will be left the
same as in the original tile, but the resids will be renumbered to ensure
uniqueness.

Return the greased system; no modifications are made to the input system.

dms-thermalize

dms-thermalize input.dms output.dms [options]

Assign Boltzmann-sampled velocities to the atoms. Atoms with zero mass
will get zero velocity.

	
msys.thermalize.apply(mol, T, seed=None)

	assign random velocities sampled from a Boltzmann distribution
of temperature T.

	
msys.thermalize.remove_drift(mol)

	Remove center of mass motion. Returns the original center of mass
velocity. Zero out the velocity of pseudoparticles.

dms-posre

Add position restraints to a dms file, using the existing atom
positions for the reference positions of the restraints. If --replace
is specified on the command line, any existing restraints will be replaced
by the new set. Otherwise, atoms that are already restrained in the existing
file will be restrained using the newly provided force constraints:

Add position restraints to backbone atoms with a force constant of 0.2
dms-posre input.dms out1.dms -s "backbone" -f 0.2

Restrain CA atoms with a force constant of 0.3
dms-posre out1.dms out2.dms -s "name CA" -f 0.3

Remove all position restraints:
dms-posre input.dms output.dms --replace
or:
dms-posre input.dms output.dms -s none --replace

	
msys.posre.apply(mol, atoms, fcx, fcy, fcz, replace=False)

	add position restraints to atoms

dms-tile

dms-replicate

dms-solvate

dms-neutralize

Validation

dms-find-knot

dms-find-knot system.dms [options]

/------- \ / \ / \----\ --------------- \ / \-------/

dms-find-knot searches for bonds which pass through a ring of atoms; e.g.,
a lipid tail passing through an aromatic ring in a protein. Such geometries
can accidentally arise during system construction and usually indicate
a badly constructed system which will behave badly during simulation.

If –untie is specified, the script will attempt to remove the knots by translating the offending bonds
outside of the ring (iteratively to convergence).

The algorithm works as follows:

	Produce a list of all cycles in the bond topology (i.e. rings)

	
	For each ring:
	
	Use boxing and distance cutoffs to reduce the number of bonds to check against

	Divide the ring into N triangles

	Check for a triangle-line intersection between the triangle and each relevant bond

dms-validate

dtr-validate

Recipes

Here are some illustrative Python scripts for situations when a command line
tool isn’t available.

Obtaining force-field parameters for certain atoms

Force-field parameters are saved in “terms” inside the force-field “tables”

table = mol.table('stretch_harm')
atoms = mol.select('index 0 1')
terms = table.findWithAll(atoms)
print(dict(terms[0]))
{'constrained': 0, 'fc': 317.0, 'memo': 'JCC,7,(1986),230; AA', 'r0': 1.522, 'type': 'C CT'}

Adding artificial bonds

Msys can add force terms to a system:

import msys, sys
ifile, ofile = sys.argv[1:]
mol=msys.Load(ifile)
T=mol.table('stretch_harm')
P=T.params
param=P.addParam()
param['fc']=32
param['r0']=1.0
T.addTerm([mol.atom(0), mol.atom(1)], param)
...
msys.Save(mol, ofile)

Adding energy groups

Desmond and Anton use the “energy_groups” atom property to assign atoms to
energy groups:

mol = msys.Load('system.dms')

add an integer property. The default value is zero. It's a no-op
if the property already exists, and an error if it exists but has a
different type.
mol.addAtomProp('grp_energy', int)

assign protein to energy group 1
for a in mol.select('protein'):
 a['grp_energy'] = 1

save the result
msys.SaveDMS(mol, 'system_engrp.dms')

Remove selected constraints

Remove all constraints for atoms in a particular atom selection, and also
update the ‘constrained’ property of the stretch_harm terms for the
stretch terms that are no longer constrained:

import sys, msys
ifile, ofile=sys.argv[1:]
seltext='hydrogen and withinbonds 1 of (backbone and nitrogen)'

print "reading from %s" % ifile
mol=msys.LoadDMS(ifile)
atoms=set(mol.select(seltext))
residues=set(a.residue for a in atoms)

print "found %d atoms in selection from %d residues" % (len(atoms), len(residues))

removed_constraints=list()

for table in mol.tables:
 if table.category != 'constraint': continue
 print "doing table", table.name
 for term in table.terms:
 for a in term.atoms:
 if a in atoms:
 removed_constraints.append(set(term.atoms))
 term.remove()
 break

print "removed %d constraints" % len(removed_constraints)

stretch=mol.table('stretch_harm')
if 'constrained' in stretch.term_props:
 print "finding constrained stretch_harm terms"

 uncons=0
 for term in mol.table('stretch_harm').terms:
 if not term['constrained']: continue
 s=set(term.atoms)
 # one of the atoms in the term must be in the original selection
 if not s.intersection(atoms):
 continue

 # mark as unconstrained if all atoms in term overlap a constraint
 for cons in removed_constraints:
 if not s.difference(cons):
 term['constrained']=0
 uncons += 1
 break

print "unconstrained %d stretch_harm terms" % uncons

print "Saving to %s" % ofile
msys.SaveDMS(mol, ofile)

Canonicalize position restraint terms

Some posre_harm tables have x0, y0, z0 as param properties rather than
term properties. This script enforces the convention that these properties
ought to be term properties:

def canonicalize(mol):
 posre=mol.table('posre_harm')
 props=set(('x0', 'y0', 'z0'))
 if props.issubset(set(posre.term_props)):
 print "Already canonical!"
 return

 if not props.issubset(set(posre.params.props)):
 print "Missing %s from posre params!" % (props,)
 exit(1)

 print "File is not canonical! Fixing..."
 posre.name = '__posre_harm_old__'
 newposre=mol.addTableFromSchema('posre_harm')
 for t in posre.terms:
 p = newposre.params.addParam()
 p['fcx'] = t['fcx']
 p['fcy'] = t['fcy']
 p['fcz'] = t['fcz']
 t2 = newposre.addTerm(t.atoms, p)
 t2['x0'] = t['x0']
 t2['y0'] = t['y0']
 t2['z0'] = t['z0']
 posre.remove()
 newposre.coalesce()

def main():
 import sys
 ifile, ofile = sys.argv[1:]
 mol=msys.LoadDMS(ifile)
 canonicalize(mol)
 mol = mol.clone()
 msys.SaveDMS(mol, ofile)

if __name__=="__main__": main()

Processing multi-entry files (e.g. SDF files)

To iterate over each structure in an SDF file, use msys.LoadMany.
The LoadMany function is a generator, so you should iterate over its
results rather than simply calling it.

Each result returned by LoadMany is a System with one ct. You’ll
need to access the ct member of the System in order to view or modify
the data values associated with each entry.

To write entries back out to a new SDF file after filtering or modifying
them, use msys.SaveSDF. It’s most efficient to create your own file
object in Python, and write the string returned by SaveSDF to that file.

When entries in the SDF file cannot be parsed, msys skips the next entry,
and msys.LoadMany returns None for the offending entry. You should check
for None in the return values of msys.LoadMany and skip them if that makes
sense for your script.

Here is an example snippet which reads each entry, filters by atom count,
modifies a data property, removes another data property, and writes the
results to another file:

def process_sdf(ifile, ofile):
 fp = open(ofile, 'w')
 for i, mol in enumerate(msys.LoadMany(ifile)):
 # skip entries which couldn't be parsed
 if mol is None:
 print "Warning, skipping entry %d" % (i+1)
 continue
 # filter systems with fewer than 5 atoms
 if mol.natoms < 5:
 continue
 ct = mol.ct(0)
 # update 'THE_SCORE' property. Note that vlaues returned by
 # get may be float, int, or string.
 score = ct.get('THE_SCORE', 0.0)
 score += 5.0
 ct['THE_SCORE'] = score
 # remove 'USELESS' property
 if ct.get('USELESS') is not None:
 del ct['USELESS']
 # write the entry back out
 fp.write(msys.SaveSDF(mol, None)

Processing large SDF files

If you have large sdf files with many thousands of entries, you may
benefit from using a set of functions specialized for SDF files.
The new functions are around 10x faster at reading SDF files and
20x faster for writing. However, there is no facility for modifying
the molecular structures of each entry, though you can inspect and
modify the data values. Also, the data values are always returned as
strings, so you must case them to appropriate types if you wish to
manipulate them as integers or floats.

The new functions are named ScanSDF and FormatSDF. Here a snippet
which performs the same actions as the process_sdf function in the
previous example, using the new functions:

def process_sdf_fast(ifile, ofile):
 fp = open(ofile, 'w')
 for i, mol in enumerate(msys.ScanSDF(ifile)):
 # skip entries which couldn't be parsed
 if mol is None:
 print "Warning, skipping entry %d" % (i+1)
 continue
 # filter systems with fewer than 5 atoms
 if mol.natoms < 5:
 continue
 # update 'THE_SCORE', coverting the existing value to float
 score = mol.get('THE_SCORE', 0.0)
 ct['THE_SCORE'] = float(score) + 5.0
 # remove 'USELESS' property
 if ct.get('USELESS') is not None:
 del ct['USELESS']
 # write the entry back out
 fp.write(msys.FormatSDF(mol)

Change the mass of selected atoms

Change the mass of selected hydrogens to 4, and compensate by increasing
the mass of the atom bonded to the hydrogen by the appropriate amount:

def adjust_masses(mol, sel, compensate=True):
 for a in mol.select('hydrogen and %s' % sel):
 old = a.mass
 a.mass = 4
 if compensate:
 a.bonded_atoms[0].mass -= 4-old

DMS Files

Msys defines and implements an sqlite-based schema called DMS for
chemical systems. This section provides an overview of the DMS
format which will be useful for users who wish to inspect their DMS
files manually using native sqlite tools, or who need to understand
the functional form of the forcefield tables found in DMS files in
order to, say, convert between file formats or use msys systems in
their own programs.

Overview

All data in a DMS file lives in a flat list of two-dimensional tables.
Each table has a unique name. Columns in the tables have a name, a
datatype, and several other attributes, most importantly, whether or
not the column is the primary key for the table. Rows in the tables
hold a value for each of the columns. Table names, column names, and
datatypes are case-preserving, but case-insensitive: thus ‘pArTiCLE’
is the same table as ‘particle’, and ‘NAME’ is the same column as ‘name’.

In addition to tables, DMS files may contain stored queries known as views.
A view combines data from one or more tables, and may apply a predicate
as well a sorting criterion. How this is actually done in SQL will be
obvious to database afficiandos; for this specification it suffices to
note that a view looks just like a table when reading a DMS file, so
the views will be described in terms of the data in their columns,
just as for tables. Importantly, views cannot be written to directly;
one instead updates the tables to which they refer.

Units

Of the five datatypes available in SQLite, DMS uses three: INTEGER, a
signed 64-bit int; FLOAT, a 64-bit IEEE floating point number; and TEXT,
a UTF8 string. In addition, any value other than a primary key can be
NULL, indicating that no value is stored for that row and column. A NULL
value is allowed in the DMS file but might be regarded as an invalid
value by a particular application; for example, Desmond make no use of
the atomic number column in the particle table, but Viparr requires it.

Because DMS is used to store dimensionful quantities, we must declare a
system of units. The units in DMS reflect a compromise between an ideal
of full consistency and the reality of practical usage; in particular,
the mass unit is amu, rather than an algebraic combination of the energy,
length, and time units.

	Dimension

	Unit

	TIME

	picosecond

	CHARGE

	electron charge

	LENGTH

	Angstrom

	ENERGY

	thermochemical kcal/mol

	MASS

	atomic mass unit (amu)

Versioning

Beginning with msys 1.7.0, a dms_version table is included in DMS
files written by msys. The version table schema consists of a major
and minor version number, and will correspond to the major and minor
version of msys. Going forward, msys will refuse to load DMS files
whose version is is higher than the msys version; thus, if and when
msys reaches version 1.8, files written by that version of msys will not
(necessarily) be readable by msys 1.7. There is always the possibility
that forward compatibility could be ported to a later msys 1.7 version.
Backward compatibility with older dms versions will always be maintained.

The DMS versioning scheme serves to prevent problems arising from new
data structures being added to the DMS file in newer versions of msys
which are not properly recognized by older versions. For example,
the nonbonded_combined_param table was added in msys 1.4.0, but
because there was no dms version string at that time, older versions of
msys would have treated that table as an auxiliary table instead of
as a set of overrides to the nonbonded table.

Chemical Structure

The DMS file contains the identity of all particles in the structure
as well as their positions and velocities in a global coordinate system.
The particle list includes both physical atoms as well as pseudoparticles
such as virtual sites and drude particles. The most important table
has the name particle; all other tables containing additional particle
properties or particle-particle interactions refer back to records in
the particle table. References to particles should follow a naming
convention of p0, p1, p2, … for each particle referenced.

Particles

The particle table associates a unique id to all particles
in the structure. The ids of the particles must all be contiguous,
starting at zero. The ordering of the particles in a DMS file for the
purpose of, e.g., writing coordinate data, is given by the order of
their ids. The minimal schema for the particle table is:

	Column

	Type

	Description

	anum

	INTEGER

	atomic number

	id

	INTEGER

	unique particle identifier

	msys_ct

	INTEGER

	ct identifier

	x

	FLOAT

	x-coordinate in LENGTH

	y

	FLOAT

	y-coordinate in LENGTH

	z

	FLOAT

	z-coordinate in LENGTH

	mass

	FLOAT

	particle mass in MASS

	charge

	FLOAT

	particle charge in CHARGE

	vx

	FLOAT

	x-velocity in LENGTH/TIME

	vy

	FLOAT

	y-velocity in LENGTH/TIME

	vz

	FLOAT

	z-velocity in LENGTH/TIME

	nbtype

	INTEGER

	nonbonded type

	resid

	INTEGER

	residue number

	resname

	TEXT

	residue name

	chain

	TEXT

	chain identifier

	name

	TEXT

	atom name

	formal_charge

	FLOAT

	format particle charge

Msys organizes chemical system into a hierarchical structure. The
hierarchy has the following names: ct, chain, residue, atom. Rows
in the particle table of a dms file are mapped into these four
structural levels according to one or more columns in the particle
table. The relevant columns for each structural level are:

	structure

	columns

	ct

	msys_ct

	chain

	chain,segid

	residue

	resname,resid,insertion

	atom

	id

Of these columns, only the id column is required. The id will be
contiguous and start at 0. The id determines the order of the particles
in the structure, important when dealing with simulation trajectories.
The other columns are treated as 0/empty string if not present.

Particles are mapped to ct object according to their msys_ct value.
Within a ct, there will be one chain object for each distinct
(chain,segid) tuple. Within a chain object, there will be one residue
object for each distinct (resname,resid,insertion) tuple. For example,
in the following hypothetical particle table with most columns elided:

	id

	chain

	resid

	0

	A

	1

	1

	A

	1

	2

	B

	1

	3

	C

	2

	4

	B

	2

there would be one ct containing three chains with 1, 2, and 1 residues
in chains A, B and C, respectively. Residues A/1, B/1, B/2, and C/2
would contain atoms 0-1, 2, 3 and 4.

Bonds

	Column

	Type

	Description

	p0

	INTEGER

	1st particle id

	p1

	INTEGER

	2nd particle id

	order

	FLOAT

	bond order

The bond table specifies the chemical topology of the system. Here,
the topology is understood to be independent of the forcefield that describes
the interactions between particles. Whether a water molecule is described
by a set of stretch and angle terms, or by a single constraint term, one would
still expect to find entries in the bond table corresponding to the
two oxygen-hydrogen bonds. Bonds may also be present between a pseudoatom
and its parent particle or particles; these bonds aid in visualization.

The p0 and p1 values correspond to an id in the particle table.
Each p0, p1 pair should be unique, non-NULL, and satisfy p0 < p1.

The global cell

	Column

	Type

	Description

	id

	INTEGER

	vector index (0, 1, or 2)

	x

	FLOAT

	x component in LENGTH

	y

	FLOAT

	y component in LENGTH

	z

	FLOAT

	z component in LENGTH

The global_cell table specifies the dimensions of the periodic cell
in which particles interact. There shall be three records, with id
0, 1, or 2; the primary key is provided since the order of the records
matters, and one would otherwise have difficulty referring to or updating
a particular record in the table.

Additional particle properties

Additional per-particle properties not already specified in the
particle table should be added to the particle table as columns.

	Column

	Type

	Description

	grp_temperature

	INTEGER

	temperature group

	grp_energy

	INTEGER

	energy group

	grp_ligand

	INTEGER

	ligand group

	grp_bias

	INTEGER

	force biasing group

	occupancy

	FLOAT

	pdb occupancy value

	bfactor

	FLOAT

	pdb temperature factor

Ct properties

The msys_ct table holds properties of each ct in the System.
The msys_ct field in the particle table maps each particle
to a ct. The msys_ct table has only one required column,
msys_name, which holds the name of the ct. Additional columns
are created in this table to hold ct properties.

Forcefields

A description of a forcefield comprises the functional form of the
interactions between particles in a chemical system, the particles that
interact with a given functional form, and the parameters that govern a
particular interaction. At a higher level, interactions can be described
as being local or nonlocal. Local particle interactions in DMS
are those described by a fixed set of n-body terms. These include bonded
terms, virtual sites, constraints, and polar terms. Nonlocal interactions
in principle involve all particles in the system, though in practice
the potential is typically range-limited. These include van der Waals
(vdw) interactions as well as electrostatics.

Metatables

In order to evaluate all the different forces between particles, a
program needs to be able to find them within a DMS file that may well
contain any number of other auxiliary tables. The DMS format solves
this problem by providing a set of ‘metatables’ containing the names
of force terms required by the forcefield as well as the names of the
tables in which the force term data is found. The force terms are placed
into one of four categories: bonded terms, constraints, virtual sites,
polar terms, described below.

	Metatable name

	Description

	bond_term

	Interactions representing bonds between atoms, including stretch, angle, and dihedral terms, as well as 1-4 pairs and position restraints.

	constraint_term

	Constraints on bonds and/or angles involving a reduction in the number of degrees of freedom of the system.

	virtual_term

	Similar to a constraint; a set of parameters describing how a pseudoparticle is to be positioned relative to a set of parent atoms.

	polar_term

	Similar to a virtual site; a set of parameters describing how a pseudoparticle moves relative to its parent atoms.

	nonbonded_table

	Additional or alternative nonbonded interactions. Present only if such alternative tables are present.

Each table name corresponding to the values in the local term metatables
is the designated string for a particular functional form.
The required columns for these tables is given in the next section. Note
that creators of DMS files are free to implement the schema as an SQL
view, rather than as a pure table; a reader of a DMS file should not assume
anything about how the columns in the table name have been assembled.

Bond Terms

Stretch terms

The vibrational motion between two atoms \((i,j)\) is represented by a
harmonic potential as:

\[V_s(r_{ij}) = f_c(r_{ij}-r_0)^2\]

where \(f_c\) is the bond force constant in units of
\(\mathrm{Energy}/\mathrm{Length}^2\) and \(r_0\) is the equilibrium
bond distance. Terms in stretch_harm
are evaluated using this potential.

Schema for the stretch_harm table

	name

	type

	description

	r0

	FLOAT

	equilibrium separation (LENGTH)

	fc

	FLOAT

	force constant (ENERGY / LENGTH2)

	p0

	INTEGER

	1st particle

	p1

	INTEGER

	2nd particle

	constrained

	INTEGER

	if nonzero, constrained; default 0

Stretch terms that overlap with
constraints should have the constrained field set to 1. Applications
that evaluate constraint terms need not evaluate stretch_harm
records that are marked as constrained.

Angle terms

The angle vibration between three atoms \((i,j,k)\) is evaluated as:

\[V_a(\theta_{ijk}) = f_c(\theta_{ijk}-\theta_0)^2\]

where \(f_c\) is the angle force constant in
\(\mathrm{Energy}/\mathrm{Radians}^2\) and \(\theta_0\) is the equilibrium
angle in radians. Beware, the explicit use of the \(\theta_{ijk}\)
angle will introduce discontinuities in the potential at
\(\theta_{ijk} = \pm\pi\). Terms in angle_harm
are evaluated using this potential.

Schema for the angle_harm table

	name

	type

	description

	theta0

	FLOAT

	equilibrium angle (DEGREES)

	fc

	FLOAT

	force constant (ENERGY / RADIAN2)

	p0

	INTEGER

	1st particle

	p1

	INTEGER

	2nd particle

	p2

	INTEGER

	3rd particle

	constrained

	INTEGER

	constrained if nonzero; default 0

The \(p0\) particle forms the
vertex. Angle terms that overlap with constraints should have the
constrained field set to 1. Applications that evaluate constraint
terms need not evaluate angle_harm records that are marked as
constrained.

Proper dihedral terms

Two functional forms for calculating proper and improper torsion
potential terms are specified. The first is:

\[V_t(\phi_{ijkl}) = f_{c0}
+ \sum_{n=1}^6 f_{cn} \cos(n\phi_{ijkl}-\phi_0)\]

where \(f_{c0} \ldots f_{c6}\) are dihedral angle force constants in units
of Energy and \(\phi_0\) is the equilibrium dihedral angle
in radians.
The \(\phi\) angle is formed by the planes \(p0\)–\(p1\)–\(p2\) and
\(p1\)–\(p2\)–\(p3\).
Terms in dihedral_trig are handled by this potential function.

Schema for the dihedral_trig table.

	name

	type

	description

	phi0

	FLOAT

	phase (DEGREES)

	fc0

	FLOAT

	order-0 force constant (ENERGY)

	fc1

	FLOAT

	order-1 force constant (ENERGY)

	fc2

	FLOAT

	order-2 force constant (ENERGY)

	fc3

	FLOAT

	order-3 force constant (ENERGY)

	fc4

	FLOAT

	order-4 force constant (ENERGY)

	fc5

	FLOAT

	order-5 force constant (ENERGY)

	fc6

	FLOAT

	order-6 force constant (ENERGY)

	p0

	INTEGER

	1st particle

	p1

	INTEGER

	2nd particle

	p2

	INTEGER

	3rd particle

	p3

	INTEGER

	4th particle

Improper dihedral terms

The second dihedral functional form is:

(1)\[V_t(\phi_{ijkl}) = f_c (\phi_{ijkl}-\phi_0)^2\]

where \(f_c\) is the dihedral angle force constant in units of
Energy/radians\(^2\) and \(\phi_0\) is the equilibrium dihedral angle
in degrees (converted to radians internally). The \(\phi\) angle is formed by the planes
\(p0\)–\(p1\)–\(p2\) and \(p1\)–\(p2\)–\(p3\). Terms in
improper_harm are handled by this potential function.

The harmonic dihedral term given in Equation (1) can lead to
accuracy issues if \(f_c\) is too small, or if initial conditions are poorly
chosen due to a discontinuity in the definition of the first derivative
with respect to \(i\) in \(\phi_{ijkl}\) near \(\phi_0 \pm \pi\).

Schema for the improper_harm table.

	name

	type

	description

	phi0

	FLOAT

	equilibrium separation (DEGREES)

	fc

	FLOAT

	force constant (ENERGY / RADIANS2)

	p0

	INTEGER

	1st particle

	p1

	INTEGER

	2nd particle

	p2

	INTEGER

	3rd particle

	p3

	INTEGER

	4th particle

CMAP torsion terms

CMAP is a torsion-torsion cross-term that uses a tabulated energy
correction. It is found in more recent versions of the CHARMM
forcefield. The potential function is given by:

\[V_c(\phi,\psi) =
\sum_{n=1}^4\sum_{m=1}^4
C_{nm}\left(\frac{\psi-\psi_L}{\Delta_\psi}\right)^{n-1}\left(\frac{\phi-\phi_L}{\Delta_\phi}\right)^{m-1}\]

where \(C_{nm}\) are bi-cubic interpolation coefficients derived from
the supplied energy table, \(\phi\) is the dihedral angle formed by
particles \(p0 \ldots p3\), and \(\psi\) is the dihedral angle formed by particles
\(p4 \ldots p7\). The grid spacings are also derived from
the supplied energy table. Terms in torsiontorsion_cmap
are handled by this potential function.

The cmap tables for each term can be found in cmapN,
where N is a unique integer identifier for a particular table
(multiple cmap terms in torsiontorsion_cmap can refer to a
single cmapN block). The format of the cmap tables
consists of two torsion angles in degrees and an associated energy.
cmap tables must begin with both torsion angles equal to -180.0 and
increase fastest in the second torsion angle. The grid spacing must
be uniform within each torsion coordinate, but can be different from
the grid spacing in other torsion coordinates.
More information can
be found in [Bro-2004].

Schema for each of the tables holding the 2D cmap grids

	name

	type

	description

	phi

	FLOAT

	phi coordinate (DEGREES)

	psi

	FLOAT

	psi coordinate (DEGREES)

	energy

	FLOAT

	energy value (ENERGY)

The CHARMM27 forcefield uses six cmap tables, which have names
cmap1, cmap2, …, cmap6 in DMS.

Schema for the torsiontorsion_cmap table

	name

	type

	description

	cmap

	INTEGER

	name of cmap table

	p0

	INTEGER

	1st particle

	p1

	INTEGER

	2nd particle

	p2

	INTEGER

	3rd particle

	p3

	INTEGER

	4th particle

	p4

	INTEGER

	5th particle

	p5

	INTEGER

	6th particle

	p6

	INTEGER

	7th particle

	p7

	INTEGER

	8th particle

Position restraint terms

Particles can be restrained to a given global coordinate by means of
the restraining potential:

\[V_r(x,y,z) = \frac{\lambda}{2} (
f_{cx}(x-x_0)^2
+ f_{cy}(y-y_0)^2
+ f_{cz}(z-z_0)^2
)\]

where \(f_{cx}\), \(f_{cy}\), \(f_{cz}\) are the force constants in
\(\mathrm{Energy}/\mathrm{Length}\sp{2}\) and \(x_0\), \(y_0\), \(z_0\) are the desired global
cell coordinates (units of Length). \(\lambda\) is a pure scaling factor, set to 1 by
default. Terms in posre_harm are evaluated using this potential.

Schema for the posre_harm table

	name

	type

	description

	fcx

	FLOAT

	X force constant in ENERGY/LENGTH2

	fcy

	FLOAT

	Y force constant in ENERGY/LENGTH2

	fcz

	FLOAT

	Z force constant in ENERGY/LENGTH2

	p0

	INTEGER

	restrained particle

	x0

	FLOAT

	x reference coordinate

	y0

	FLOAT

	y reference coordinate

	z0

	FLOAT

	z reference coordinate

Pair 12–6 terms

Pair terms in pair_12_6_es allow for modifying the normally
calculated nonbonded interactions either by scaling the interaction
energy, or by specifying new coefficients to use for a particular
pair. This partial or modified energy is calculated in addition to
the normally calculated interaction energy.

The functional form of the pair potential is:

\[V_p(r_{ij}) =
\frac{a_{ij}}{r_{ij}^{12}}
- \frac{b_{ij}}{r_{ij}^{ 6}}
+ \frac{q_{ij}}{r_{ij}}\]

The \(a_{ij}\), \(b_{ij}\), and \(q_{ij}\) coefficients are specified
in the pair_12_6_es table.

Schema for the pair_12_6_es table

	name

	type

	description

	aij

	FLOAT

	scaled LJ12 coeff in ENERGY LENGTH12

	bij

	FLOAT

	scaled LJ6 coeff in ENERGY LENGTH6

	qij

	FLOAT

	scaled product of charges in CHARGE2

	p0

	INTEGER

	1st particle

	p1

	INTEGER

	2nd particle

Flat-bottomed harmonic well

The functional form of the flat-bottomed harmonic angle term is
\(V=|d|^2\) where

\[\begin{split}d &= \begin{cases}
(\theta-\theta_0+\sigma) & \mbox{where } \theta-\theta_0 < -\sigma \\
0 & \mbox{where } -\sigma <= \theta-\theta_0 < \sigma \\
(\theta-\theta_0-\sigma) & \mbox{where } \sigma <= \theta-\theta_0
\end{cases}\end{split}\]

and \(\theta_0\) is in radians.

Schema for the angle_fbhw table

	name

	type

	description

	fc

	FLOAT

	force constant in ENERGY/RADIANS2

	theta0

	FLOAT

	equilibrium angle in DEGREES

	sigma

	FLOAT

	half-width of flat-bottomed region in DEGREES

	p0

	INTEGER

	first particle

	p1

	INTEGER

	second particle

	p2

	INTEGER

	third particle

The functional form of the FBHW improper term is \(V=f_c d^2\) where

\[\begin{split}d &= \begin{cases}
(\phi-\phi_0+\sigma) & \mbox{where } \phi-\phi_0 < -\sigma \\
0 & \mbox{where } -\sigma <= \phi-\phi_0 < \sigma \\
(\phi-\phi_0-\sigma) & \mbox{where } \sigma <= \phi-\phi_0
\end{cases}\end{split}\]

The improper dihedral angle phi is the angle between the plane
ijk and jkl. Thus fc is in ENERGY and phi0 is in RADIANS.

Schema for the improper_fbhw table

	name

	type

	description

	fc

	FLOAT

	force constant in ENERGY/RADIANS2

	phi0

	FLOAT

	equilibrium improper dihedral angle in DEGREES

	sigma

	FLOAT

	half-width of flat-bottomed region in DEGREES

	p0

	INTEGER

	first particle

	p1

	INTEGER

	second particle

	p2

	INTEGER

	third particle

	p3

	INTEGER

	fourth particle

The functional form of the FBHW posre term is \(V=f_c/2 d^2\) where

\[\begin{split}d = \begin{cases}
|r-r0|-\sigma & \mbox{where } |r-r0| > \sigma \\
 0 & \mbox{where } |r-r0| <= \sigma
\end{cases}\end{split}\]

This is not as general as the fully harmonic position restraint term
in that you can’t specify different force constants for the three
coordinate axes.

Schema for the posre_fbhw table

	name

	type

	description

	fc

	FLOAT

	force constant in ENERGY/LENGTH2

	x0

	FLOAT

	equilibrium \(x\) coordinate in LENGTH

	y0

	FLOAT

	equilibrium \(y\) coordinate in LENGTH

	z0

	FLOAT

	equilibrium \(z\) coordinate in LENGTH

	sigma

	FLOAT

	radius of flat-bottomed region in LENGTH

	p0

	INTEGER

	restrained particle

Exclusions

Exclusion terms in exclusion are used to prevent
calculation of certain non bonded interactions at short ranges. The
excluded interactions are typically those that involve particles
separated by one or two bonds, as these interactions are assumed to be
adequately modeled by the stretch and angle terms described above.

Schema for the exclusion table

	name

	type

	description

	p0

	INTEGER

	1st particle

	p1

	INTEGER

	2nd particle

It is required that \(p0 < p1\) for each term, and every \(p0\), \(p1\)
pair should be unique.

Constraint Terms

Constraints fix the distances between pairs of particles according to
a topology of rigid rods:

\[\begin{align}\begin{aligned}|| r_i - r_j || &= d_{ij}\\|| r_k - r_l || &= d_{kl}\\\ldots\end{aligned}\end{align} \]

The topologies that can be constrained are:

	AHn: n particles connected to a single particle, with
\(1 \le n \le 8\).

	HOH: three mutually connected particles.

The schemas in the DMS file for AHn and HOH constraints
are shown in Schema for the constraint_ahN tables and Schema for the constraint_hoh (rigid water) table,
respectively. Each record in the AHn table gives the length of
the bonds between a single parent atom and n child atoms.
Each record in the HOH table gives the angle between the two
O-H bonds and the respective bonds lengths.

Schema for the constraint_ahN tables

	name

	type

	description

	r1

	FLOAT

	A-H1 distance

	r2

	FLOAT

	A-H2 distance

	…

	
	

	rN

	FLOAT

	A-HN distance

	p0

	INTEGER

	id of parent atom

	p1

	INTEGER

	id of H1

	p2

	INTEGER

	id of H2

	…

	
	

	pN

	INTEGER

	id of HN

Schema for the constraint_hoh (rigid water) table

	name

	type

	description

	theta

	FLOAT

	H-O-H angle in DEGREES

	r1

	FLOAT

	O-H1 distance

	r2

	FLOAT

	O-H2 distance

	p0

	INTEGER

	id of heavy atom (oxygen)

	p1

	INTEGER

	id of H1

	p2

	INTEGER

	id of H2

A constrained particle is no longer free; each such particle has
\(3 - m/2\) degrees of freedom, where \(m\) is the number of
independent constraints involved; for example, a pair of particles
having only one distance constraint between them has five degrees of
freedom. Constraints thus affect the calculation of the instantaneous
temperature and pressure, which depend on the number of degrees of
freedom.

The AHnR constraints are versions of the AHn constraints with
additional distances sufficient to create a rigid body. As with water
constraints, the alternative Reich algorithm is used by default.

Schema for the constraint_ah1R table

	name

	type

	description

	r1

	FLOAT

	A-H1 distance

	p0

	INTEGER

	id of parent atom

	p1

	INTEGER

	id of H1

Schema for the constraint_ah2R table

	name

	type

	description

	r1

	FLOAT

	A-H1 distance

	r2

	FLOAT

	A-H2 distance

	r3

	FLOAT

	H1-H2 distance

	p0

	INTEGER

	id of parent atom

	p1

	INTEGER

	id of H1

	p2

	INTEGER

	id of H2

Schema for the constraint_ah3R table

	name

	type

	description

	r1

	FLOAT

	A-H1 distance

	r2

	FLOAT

	A-H2 distance

	r3

	FLOAT

	A-H3 distance

	r4

	FLOAT

	H1-H2 distance

	r5

	FLOAT

	H1-H3 distance

	r6

	FLOAT

	H2-H3 distance

	p0

	INTEGER

	id of parent atom

	p1

	INTEGER

	id of H1

	p2

	INTEGER

	id of H2

	p3

	INTEGER

	id of H3

Virtual sites

force.virtual = {
 exclude = [...] # optional names to remove
 include = [...] # optional names to add
 # typically, no other per-term arguments required
}

Virtual sites, a form of pseudoparticle, are additional off-atom
interaction sites that can be added to a molecular system. These
sites can have charge or van der Waals parameters associated with
them; they are usually massless. The TIP4P and TIP5P water models are
examples that contain one and two off-atom (virtual) sites,
respectively. Because these sites are massless, it is necessary to
redistribute any forces acting on them to the particles used in their
construction. (A consistent way to do this can be found in [Gun-1984].) The
virial in most cases must also be modified after redistributing the
virtual site force.

The types of virtual site placement routines are described below.

lc2 virtual site

The lc2 virtual site is placed some fraction a along the vector
between two particles \((i,j)\).

\[\vec r_v = (1-c_1)\vec r_i + c_1 \vec r_j\]

Schema for virtual_lc2 records

	name

	type

	description

	c1

	FLOAT

	coefficient 1

	p0

	INTEGER

	pseudoparticle id

	p1

	INTEGER

	parent atom i

	p2

	INTEGER

	parent atom j

Pseudoparticle \(p0\) is
placed at the fractional position \(c1\) along the interpolated line between
\(p1\) and \(p2\).

lc3 virtual site

The lc3 virtual site is placed some fraction \(a\) and \(b\) along the
vectors between particles \((i,j)\) and \((i,k)\) respectively. The
virtual particle lies in the plane formed by \((i,j,k)\).

\[\vec r_v = (1-c_1-c_2)\vec r_i + c_1 \vec r_j + c_2 \vec r_k\]

Schema for the virtual_lc3 table

	name

	type

	description

	c1

	FLOAT

	coefficient 1

	c2

	FLOAT

	coefficient 2

	p0

	INTEGER

	pseudoparticle id

	p1

	INTEGER

	parent atom i

	p2

	INTEGER

	parent atom j

	p3

	INTEGER

	parent atom k

fdat3 virtual site

The fdat3 virtual site is placed at a fixed distance \(d\) from
particle \(i\), at a fixed angle \(\theta\)
defined by particles \((v,i,j)\) and at a fixed torsion \(\phi\)
defined by particles \((v,i,j,k)\).

\[\vec r_v = \vec r_i +
a \vec r_{1} + b \vec r_{2} + c \vec r_{2}\times \vec r_{1}\]

where \(\vec r_1\) and \(\vec r_2\) are unit vectors defined by

\[\begin{align}\begin{aligned}\vec r_1 &\propto \vec r_j - \vec r_i\\\vec r_2 &\propto \vec r_k - \vec r_j - (\vec r_k - \vec r_j)\cdot \vec r_1 \vec r_1\end{aligned}\end{align} \]

The coefficients \(a\), \(b\) and \(c\) above are defined as
\(a = d\cos(\theta)\), \(b = d\sin(\theta)\cos(\phi)\) and
\(c = d\sin(\theta)\sin(\phi)\).

Schema for the virtual_fdat3 table

	name

	type

	description

	c1

	FLOAT

	\(d\) coefficient

	c2

	FLOAT

	\(\theta\) coefficient

	c3

	FLOAT

	\(\phi\) coefficient

	p0

	INTEGER

	pseudoparticle id

	p1

	INTEGER

	parent atom i

	p2

	INTEGER

	parent atom j

	p3

	INTEGER

	parent atom k

out3 virtual site

The out3 virtual site can be placed out of the plane of three
particles \((i,j,k)\).

\[\vec r_v = \vec r_i + c_1 (\vec r_j-\vec r_i) + c_2 (\vec r_k-\vec r_i)
+ c_3 (\vec r_j-\vec r_i) \times (\vec r_k-\vec r_i)\]

Schema for the virtual_out3 table

	name

	type

	description

	c1

	FLOAT

	coefficient 1

	c2

	FLOAT

	coefficient 2

	c3

	FLOAT

	coefficient 3

	p0

	INTEGER

	pseudoparticle id

	p1

	INTEGER

	parent atom i

	p2

	INTEGER

	parent atom j

	p3

	INTEGER

	parent atom k

Nonbonded interactions

The functional form for nonbonded interactions, as well as the
tables containing the interaction parameters and type assignments,
are given by the fields in the nonbonded_info table, shown below:

	Column

	Type

	Description

	name

	TEXT

	nonbonded functional form

	rule

	TEXT

	combining rule for nonbonded parameters

There should exactly one record in the nonbonded_info table.
Like the local interaction tables,
the name field indicates the functional form of the nonbonded
interaction type. If the particles have no nonbonded interactions,
name should have the special value none.

The parameters for nonbonded interactions will be stored in a table
called nonbonded_param, whose schema depends on the value of
name in nonbonded_info. All such schemas must have a
primary key column called id; there are no other restrictions.

The nbtype column in the particle table gives the nonbonded
type assignment. The value of the type assignment must correspond to
one of the primary keys in the nonbonded_param table.

Typically, the parameters governing the nonbonded interaction between
a pair of particles is a simple function of the parameters assigned to
the individual particles. For example, in a Lennard-Jones functional
form with parameters sigma and epsilon, the combined parameters are
typically the arithmetic or geometric mean of sigma and epsilon.
The required approach is obtained by the application from the value of
rule in nonbonded_info.

For the interaction parameters that cannot be so simply derived, a table
called nonbonded_combined_param may be provided, with a schema shown
in Table~ref{tab:combinedparam}. Like the nonbonded_param table,
the schema of nonbonded_combined_param will depend on the functional
form of the nonbonded interactions, but there are two required columns,
which indicate which entry in nonbonded_param are being overridden.
Only param1 and param2 are required; the remaining columns provide
the interaction-dependent coefficients.

	Column

	Type

	Description

	param1

	INTEGER

	1st entry in nonbonded_param table

	param2

	INTEGER

	2nd entry in nonbonded_param table

	coeff1

	FLOAT

	first combined coefficient

	

	
	other combined coefficients…

Schema for the vdw_12_6 nonbonded type

	name

	type

	description

	sigma

	FLOAT

	VdW radius in LENGTH

	epsilon

	FLOAT

	VdW energy in ENERGY

The functional form is
\(V = a_{ij} / |r|^{12} + b_{ij} / |r|^6\), where \(a_{ij}\) and \(b_{ij}\) are computed
by applying either the combining rule from nonbonded_info or the
value from nonbonded_combined_param to obtain
\(\sigma\) and \(\epsilon\), then computing
\(a_{ij} = 4 \epsilon \sigma^{12}\) and \(b_{ij} = -4 \epsilon \sigma^6\).

Alchemical systems

Methods for calculating relative free energies or energies of solvation
using free energy perturbation (FEP) involve mutating one or more chemical
entities from a reference state, labeled ‘A’, to a new state, labeled
‘B’. DMS treats FEP calculations as just another set of interactions
with an extended functional form. In order to permit multiple independent
mutations to be carried out in the same simulation, a ‘moiety’ label is
applied to each mutating particle and bonded term.

Any particle whose charge or nonbonded parameters changes in going
from state A to state B, is considered to be an alchemical particle
and must have a moiety assigned to it. The set of distinct moieties
should begin at 0 and increase consecutively. The set of alchemical
particles, if any,
should be provided in a table called alchemical_particle shown
below:

	Column

	Type

	Description

	p0

	INTEGER

	alchemical particle id

	moiety

	INTEGER

	moiety assignment

	nbtypeA

	INTEGER

	entry in nonbonded_param for A state

	nbtypeB

	INTEGER

	entry in nonbonded_param for B state

	chargeA

	FLOAT

	charge in the A state

	chargeB

	FLOAT

	charge in the B state

Alchemical bonded terms can be treated by creating a table analogous
to the non-alchemical version, but replacing each interaction parameter
with an ‘A’ and a ‘B’ version. As a naming convention, the string
alchemical_ should be prepended to the name of the table. An example
is given below for alchemical_stretch_harm records, corresponding
to alchemical harmonic stretch terms with a functional form given by
interpolating between the parameters for states A and B.

	Column

	Type

	Description

	r0A

	FLOAT

	equilibrium separation in A state

	fcA

	FLOAT

	force constant in A state

	r0B

	FLOAT

	equilibrium separation in B state

	fcB

	FLOAT

	force constant in B state

	p0

	INTEGER

	1st particle

	p1

	INTEGER

	2nd particle

	moiety

	INTEGER

	chemical group

References

	Bro-2004

	C. L. Brooks III, A. D. MacKerell Jr., M. Feig,
“Extending the treatment of backbone energetics in protein force
fields: limitations of gas-phase quantum mechanics in reproducing
protein conformational distributions in molecular dynamics
simulations”, J. Comput. Chem., 25:1400–1415, 2004.

	Gun-1984

	W. F. van Gunsteren H. J. C Berendsen, “Molecular
dynamics simulations: Techniques and approaches”, In A. J. Barnes
et al., editor, Molecular Liquids: Dynamics and Interactions,
NATO ASI C 135, pages 475–500. Reidel Dordrecht, The Netherlands,
1984.

Release notes

1.7.301 Fix dms-select

1.7.300 Add a default 60s timeout to AssignBondOrderAndFormalCharges
 No provenance in etr metadata.
 Add scripts for building binary wheel files.
 Detect when clone() breaks bonds.
 Make protein" selection include ACE and NMA.

1.7.299 Support numpy integers in System.clone()
 Don't write zero-length metadata frames.

1.7.298 Fix for MAE export of empty m_depend fields.

1.7.297 New use_index keyword for clone().

1.7.296 Skip mae ct properties with conflicting type.

1.7.295 Add compare_frames tool.

1.7.294 Don't fail on empty stk.
 Remove phi0 from dihedral_fourier schema.

1.7.293 Add rudimentary psf export.
 Drop support for ddparams.
 Maintain atom order when writing pdb files.

1.7.292 Added softened_stretch_harm schema.
 Improve speed of reading stk cache files
 Isotope support for sdf and to/from oechem.

1.7.291 Fix bug in ct property handling introduced in 1.7.284.

1.7.290 Fix reading of stks with empty framesets.

1.7.289 Drop python2 from build and tests, again.

1.7.288 Restore the python2 build, for now.

1.7.287 Docstring fix for findContactIds.
 Fix very old bug in SSSR which may not have affected anyone.
 Added dms-hmr.
 Add metadata keyword to DtrWriter constructor.
 Use bytearray when unicode conversion fails reading dtr keyvals.

1.7.284 Add msys.ConvertFromRdkit.
 Better handling of ct properties in dms files.

1.7.283 Bring tests/files back into the main repo.
 Fixes and notes for external builds.
 Handle empty string in mae vdwtype.
 Add testModifiedInteractionConsistency to validate.
 Expose metadata keyvals from Python via DtrReader.metadata.
 Add benchmark program.
 Add dms-restrain-dihedrals script.

1.7.282 Support for compressed positions in dtr frames
 New dms-randomized-atoms and dms-diff-ff scripts
 Fix for ConvertToRdkit when vsites are present.

1.7.281 canonicalize atoms and bonds before calculating
 bond orders and formal charges
 bugfix for usage of msys.* in MatchFragments python code

1.7.280 Handle UNREAD as jobstep_id in stk cache.

1.7.279 Ensure ConvertToOEChem gives deterministic order of bonds
 Add documentation on extracting force-field parameters
 Fixed docs for improper definition (DESRESCode4243)
 Drop python2 from build and tests.
 Better error message when addProp fails.

1.7.278 Silence some compile warnings.
 Fix for ParamTable::compare.
 Routine to build amber-style pairs and exclusions.
 Make json format use full precision parsing.
 Make json format handle aux tables.
 Skip writing of blank provenance entries.
 Add a close() method to DtrWriter.
 Handle mae export when ct fields contain whitespace.
 Bump python version.
 Don't prereq a desres-python from lib-python.

1.7.277 Make System.hash sort terms by default.
 dtr-validate: require constraints only if there are hydrogens.
 Run anton2 tests by default.
 Drop #include of boost/thread.
 Initial implementation of experimental json format.

1.7.276 Store atom name in ConvertToRdkit.
 DtrReader.keyvals() automatically unpacks ETR frames
 Allow ETRs to be written by DtrWriters

1.7.275 Fix stk cache file writing.

1.7.274 Fix dms-tile.
 Fix dms-sequence.
 Bump python versions.

1.7.273 Fix dms-neutralize for neutral systems.
 Support reading mol2 files with no residues.

1.7.272 Support reading bond order 0 in sdf.

1.7.271 Remove old desmond validation routines.
 Python3 fix for dms-select.

1.7.270 Propagate return code in dms-diff.
 Added System.save().
 Fix structure-only for dms-neutralize.
 Documention DMS functional forms.
 Load mathjax in docs.
 Use python3 as executable in tools.

1.7.266 Turn off water-pad by default in Neutralize.
 Fix for within selections when atoms have been deleted.

1.7.265 Support molecular ionic species in Neutralize.
 Add support for VMD-style sequence selection.

1.7.264 Conda support.
 Replace some test files with synthetic data.
 desres-python/3.7.2-08.

1.7.262 Fix dms-neutralize and add --structure-only option.

1.7.261 Added neutralize.Neutralize and dms-neutralize.
 Replace spaces with '_' in mol2 names and resnames.

1.7.259 New FindDistinctFragments interface.

1.7.258 Fix broken dms-info caused by remove of msys.vdw.

1.7.257 Remove dms-scale-vdw and dms-override-vdw.
 Make dms-find-knot agree with dms-validate.
 Added msys.MatchFragments.

1.7.256 Fix for Graph to support viparr-style graph matching.

1.7.255 desres-python/3.7.2-04
 Fix for writing dms files with tables containing more than 10 atoms.

1.7.254 desres-python/3.7.2-02.

1.7.253 Bump desres-python/3.7.0 to 3.7.2.
 Support the != operator in atomsel.
 Fix documentation in molfile.

1.7.252 Fix ParseSDF for python3.

1.7.251 Added vtfplugin.

1.7.250 msys.ConvertFromOEChem now preserves chain and residue information.

1.7.249 Make InChI ignore vsites.

1.7.248 Add consider_stereo flag to FindDistinctFragments.
 Fix missing call to updateFragids in ImportSdf.

1.7.247 Include pseudos when validating against nonbonded contacts [DESRESCode#4042]
 Fix missing shlib version on msys.so.

1.7.246 Fix msys.Load(jobid) for both return types of yas_job.input_ark
 Read CRYSIN records from mol2 files.
 Wrap ImportPDBUnitCell.
 Added periodic option to System.findBonds.
 Add docs on msys.sequence and a few other tools.
 Added color option to Graph.

1.7.245 Use bytearray for dtr unsigned char fields.
 New "degree" selection keyword for bonds between real atoms.

1.7.244 Make "ion" selection atomic number and bond based.
 Change old "ion" selection to "legacy_ion".
 Handle ComputeTopologicalIds for systems with crazy pseudos.
 Handle nonconsecutive resids in mol2 files.
 Avoid crashing in find-contacts for unreasonable coordinates.
 Fix for undecodeable bytes in DtrReader.keyvals [DESRESCode#4002].

1.7.243 Python3.7.

1.7.242 Atomselection bug for 'all'.

1.7.241 Fix for dms-dump.
 Docs for molfile trajectory writing.
 Triclinic support for pfx.
 Add dms-validate check for virtuals in multiple virtual tables.

1.7.240 Added ReplaceTableWithSortedTerms.
 Implement dms-diff in python instead of shell.
 Fix the Graph.atoms method.
 Use inchi/1.05.
 Make msys.Graph check for duplicates.
 Tweaks to the build for external users.

1.7.239 DESRESCode#3974: Fix some broken tool scripts.

1.7.238 Fix broken lib-python3 from 1.7.237.
 DESRESCode#3964: fix mol2 reading and writing.

1.7.237 Use new sconsutils; should affect developers only.

1.7.235 Add a 'moe' option to msys.SaveMol2 to output guanidinium
 groups MOE can will parse correctly. This option is turned
 on by default as it seems _most_ tools handle this variant
 fine.

1.7.233 Fix dms-dump (broken since 1.7.230).
 Added SpatialHash::findPairlist.
 Better verbosity API for validate.

1.7.232 Use python/2.7.15 and 3.6.6 megamodules.
 Update boost from 1.63 to 1.67.
 Add bindings for System.addProvenance.

1.7.230 Added virtual_lc1 schema
 Fix for dms-dump with .sqliterc files
 Unused param fix for v2 compatibility

1.7.229 Added dtr_frame_{from,as}_bytes.

1.7.228 Added msys.FormatDMS.
 Pickled systems use zlib; 3-20x smaller pickles.
 FindDistinctFragment returns full map of equivalent fragments.

1.7.227 Support K+ as an ion residue name.
 Include tempered_nonbonded and modified_interaction in dms-dump
 Add table schemas for constraint_ahNR

1.7.226 Fix molfile.StkFile for python3
 Use new megamodules (-03c7).
 Check for atom count consistency in stks.
 dtr-validate: add check for constrained hydrogens.
 Add LoadMany for concatenated dms files.

1.7.225 Use 1/1024 fs as the time quantum for dtr trajectory processing.
 Make msys.SaveDMS(..., unbuffered=True) around 10x faster.
 Remove vestigial ExportDMSMany reference.
 Make SystemImporter python bindings work.

1.7.224 msys.ConvertFromOEChem will no longer complain about
 molecules not having hydrogens that don't actually have
 hydrogens, e.g., O=S=O.
 msys.ConvertToOEChem will always set the dimension of the
 molecule to 3D as msys really only traffics in 3D molecules.

1.7.223 Yet another fix for double precision in timekeys files.
 Expose error message from numpy version clashes

1.7.222 msys.ConvertToOEChem can take a list of atoms to convert to convert a subset much faster.

1.7.221 msys.Convert(To/From)OEChem will preserve the molecule title
 Fix SaveDMS for unbuffered=True.
 Added (..., sanitize=True) option to msys.ConvertToRdkit.

1.7.220 Added msys.ConvertFromOEChem (DESRESCode#3785).

1.7.219 Report strerror(errno) when reading dms files (DESRESInfra#39849)

1.7.218 Write .dms.gz files using gzip. DESRESCode#3771.
 Added rigid_explicitN schema.
 All dms-tools and msys.Load support jobids as arguments.
 Sort atoms and bonds by atom ids.
 More precise handling of timekeys in large stks.

1.7.216 Fixing msys.ConvertToRdkit to work with RDKit 2017.09.
 Sanity check added to Chem.DetectBondStereoChemistry was
 being tripped and needed to be worked around.

 Refactored test cases and making sure to run RDKit and
 OEChem conversion test cases.

1.7.215 Removed v7 stk cache code and added utility to rename
 a dtr in an stk cache file.

1.7.214 Make msys.InChI include stereo by default (SNon=True).
 Fix mol2 handling of resids (DESRESCode#3747).

1.7.213 Bump megamodule versions.
 Don't filter metals in bond order assigner (DESRESCode#3713).
 Ignore excluded knots in dms-validate (DESRESCode#3566).
 Added an ignore_excluded option to findContactIds()
 Fix altloc writing (DESRESCode#3626).
 Fix pdb download.
 Expose SystemImporter from python.

1.7.212 Added msys.ConvertToOEChem.
 Added --without-pos option to dms-dump.

1.7.211 Optionally compute and store resonant charge and bond order.

1.7.210 python3 support.

1.7.208 Added molfile.list_fields()
 Make DtrReader.frame(...) not panic if the FORMAT is empty.
 Fixed reading of dms files with table properties.
 Use new sphinx-rtd-theme for fixed doc search.
 Avoid a deadly exception when writing a dms with missing nbtypes.
 Handle variable-sized frames in etr files.

1.7.207 DESRESCode#3590 - changes from schrodinger.

1.7.206 Bring back GuessHydrogenPositions
 New dms-solvate for those who can't use viparr.
 dms-tile checks for reasonable box size.
 DESRESCode#3571 : Added dms-validate case for massless atoms
 DESRES_ROOT is deprecated, have the cache query DESRES_LOCATION
 Bugfix in bond order assigner
 Make old, non-monotonic stks only generate warning.

1.7.205 Added PyCapsule interface for easier pybind11 integration.
 Added msys.System.hash() function to replace dms-hash.

1.7.204 Added Cl- to 'ion' atom selection.
 Using cent7 garden modules.

1.7.203 Fix for dms-frame broken by DESRESCode#3486 in previous release.
 Double precision support for SpatialHash in C++.
 Eliminate dms-hash.

1.7.202 DESRESCode#3486 - changes from schrodinger.
 Added SpatialHash::findContactsReuseVoxels.
 dms-validate skips knot check when system is alchemical.
 New libmsys-core and versioned libmsys.
 gcc/6.3 portability.
 Remove cealign.

1.7.157 DESRESCode#3438 - fix reading sdf files without trailing delim.
 DESRESCode#3472 - fix msys.System.guessBonds.
 DESRESCode#3450 - pickle support for residues and chains.
 DESRESCode#3461 - fix ComputeTopologicalIds bindings.
 DESRESCode#3452 - use garden flex and bison for CentOS7 support.
 use desres-python/2.7.13-02.

1.7.156 Fix build of docs.

1.7.155 Python/2.7.12-03st.

1.7.154 Python/2.7.12-02st, gcc/5.2.0-33x, boost/1.59-06.

1.7.153 Fixed reading of dms files with table properties.
 Experimental new msys to rdkit converter.
 Experimental new IndexedFileLoader.
 Support for ETR writing.
 Added ElectronegativityForElement.
 Don't write mae files with bad key names.
 Rip out resonant_charge and resonant_order.
 Removed msys2mol2 - use dms-select instead.
 Don't grow the SpatialHash grid too large.
 SpatialHash input checks.
 Fixes for smiles charge parsing.
 Fix LoadDMS(buffer).

1.7.149 Pass --reorder to dms-dump in dms-diff.
 Handle coordinate-only Amber crd files. (DESRESCode#3183).
 Fix dms-frame (DESRESCode#3205).

1.7.148 Fixed typo in dtr-validate.

1.7.147 C++: TermTable::atomsFast() and paramFAST().
 Pickle support for Systems (DESRESCode#3148).
 Include all of msys module in the docs.
 Fixes for Mac build/test.

1.7.145 Use just SSE4_1 for findContacts since drdb has only that.

1.7.144 C++: Replace boost::shared_ptr with std::shared_ptr.
 Better smiles support (DESRESCode#3109)
 SSE4 acceleration of findContacts.
 Fix AnnotatedSystem.repr (DESRESCode#3108)
 Added optional weights argument to pfx.aligned_rmsd.
 Throw exception on empty atom selections.

1.7.143 C++: Spatial hash doesn't compute the square root anymore.
 C++: Fix installation of atomsel headers.
 Skip over newlines and tabs in atom selections.

1.7.142 NEW: msys-fetch-pdb tool
 NEW: SpatialHash.findContacts (supports minimum image checks)
 FIXED: parsing of negative integers in atom selections
 FIXED: dms-grease periodic wrapping.
 IMPROVED: error reporting in atom selections.
 Tracking ticket: DESRESCode#3040.

1.7.141 Fix incorrect check for leading zero in json int.
 Disable multithreaded molfile.read_frames.
 Handle negative integers in atom selections.
 Report line number in sdf import errors.
 Fix empty atom selections in System.atomsel.
 Fix preservation of absolute stereo in sdf I/O.
 Move alchemical system generation to sw/libs/atommatch.

1.7.140 Using Python/2.7.11-03st
 DESRESCode#2857: Fix msys.Term.system property.
 DESRESCode#2779: dms-replicate sets resid, chain or ct as needed.
 C++: Move ThreeRoe out of dtrplugin header.

1.7.139 Make molfile use sequential access for dtr.
 Fix bug with ETRs if no TSS values followed FORMAT.

1.7.138 mol2 processing fixes: preserve sybyl_type; fix aromatic bond type.
 Make dms-frame complain about -t or -n without -i.
 Added dtr-validate to tools documentation.

1.7.137 SDF file processing just uses LoadMany now.
 ScanSDF is gone; use LoadMany, to read, FormatSDF to write.

1.7.136 Fix bug in System.atomsel when alignment produces reflections.

1.7.135 System.selectIds takes optional pos and box.
 The 'fragment' atom selection keyword is now a synonym for 'fragid'.
 dtr-validate now takes only a single path.
 Molfile handles single-row seqfiles.
 Make dms-validate handle systems with virtuals more intelligently.

1.7.134 Double the speed of within searches for small target selections.

1.7.133 Don't put inchi strings in alchemical dms.

1.7.132 rst7 support in dms-frame.
 dms-frame no longer wraps by default.
 Added MakeAlchemical python bindings.
 Build with latest OS X compiler.

1.7.131 Added near-workalike fstime and fsdump.
 Added DtrReader.keyvals().
 C++: AnnotatedSystem no longer holds a SystemPtr, and is itself not
 a shared_ptr.
 Made smarts matching around 3x faster.
 Better error checking on archive file writing.
 Added etr as valid extension type for dtr.

1.7.130 Support for alchemical ffio_morsebonds.
 Handle NULL chains, segids, etc. in dms files.
 Allow extra blank line after M END in ScanSDF.
 C++: make pfx::Graph constructible directly from SystemPtr.
 Fix a memory leak affecting all dms file reading (!).

1.7.129 Support for ffio_morsebonds in mae files.
 More efficient term table indexing.
 Support for .gz files in ScanSDF.

1.7.128 Handle stk files containing empty dtrs (DESRESCode#2406).

1.7.127 Added --energy option to dtr-validate.

1.7.126 Alchemical fix for multiple dihedrals.

1.7.125 Fix reading of stk files whose parent directory changed.

1.7.124 Added AllowBadCharges option to AnnotatedSystem.
 Support more valences for heavy atoms.
 Fix writing of sdf files with formal charge=4.
 Fix pfx for very extended system.
 Use pandas.read_csv for eneseq files when available.
 Accomodate empty eneseq files.

1.7.123 New stk caching ready to roll out.
 Added SmartsPattern.match for Python.

1.7.122 Handle long title lines in ScanSDF.

1.7.121 Fixed charge parsing in ScanSDF.
 Added --add-hydrogens and --guess-hydrogen-positions to dms-select.

1.7.120 Added --sorted option to dms-select.
 Fixed .gro box size unit conversion.
 Fixed bond order assignment for systems with bonds to pseudos.

1.7.119 Experimental ETR support and new STK caching - do not use!

1.7.118 Added paramtype atom selection keyword.

1.7.117 More ScanSDF robustness improvements.

1.7.116 Improvements to ScanSDF and FormatSDF.

1.7.115 Add checkpoint option to dtr-validate to turn off delta_t checks.

1.7.114 Make dtr-validate perform some additional checks on timekeys.

1.7.113 dtr-validate backwards compatibility.
 Fix sdf import bug handling entries containing doublet radical.
 Start using the new stk cache.

1.7.112 Disregard difference in type and memo in identifying alchemical terms.
 Accommodate missing tables in both A and B states in alchemical mapping.

1.7.111 Support for gromacs files (gro, g96, trr, trj, xtc).
 Build with C++11.
 Better error handling in dms export.

1.7.110 Stk cache files are placed alongside original stk.
 DtrReader class supports sequential reading for stk.

1.7.109 Revert the 1.7.103 changes to structure_only. structure_only now
 excludes pseudos. Also excluded in mae files (previously wasn't).

 Added new without_tables option to Load(), which causes term tables
 to be ignored during loading but otherwise gives you all particles.

1.7.108 Another shot at build fixes.

1.7.107 Build fixes.

1.7.106 Added --unrotate option to dms-frame.

1.7.105 Smiles functionality factored out into its own garden module.

1.7.104 Experimental SMILES parsing.
 Added LoadSDF function.
 The mol2 exporter mistakenly assigned C.cat atom type in some cases.

1.7.103 Loading structure-only now includes pseudos.
 Fix a bug in import where residues were sometimes erroneously split.

1.7.100 No more versioned libmsys.so.

1.7.99 Create a versioned libmsys.so.
 Fix molfile-based reading of dms with pseudos.
 More HBond finder improvements.
 Added raw dtr I/O support for Python.

1.7.98 Better xyz, dx, and Amber prm/rst7 file support.
 HBondFinder allows multiple donor hydrogens.
 Eliminate primegen dependency.

1.7.97 Fix mol2 bond type output.
 Fix molfile xyz plugin.
 Added dx plugin.

1.7.96 Fix mol2 atom type output.

1.7.95 Fix the /lib submodule, which behaved differently under garden.

1.7.94 Bump lp_solve version to get tighter symbol visibility.
 Fix race condition in build script.
 mol2 exporter now always assigns Sybyl atom types.

1.7.93 Hydrogen bond finder.

1.7.92 Added weights option to Pfx.align.
 Fix OSX compilation issues.
 Enhance molfile.Timekeys Python interface.

1.7.91 Added ostream operator to SmallString.

1.7.90 Incorporated molfile into msys. Use 'from msys import molfile'.
 pbwithin selection now handles rotated unit cell correctly.
 [pb]nearest now handles empty subselection.
 Slight change to SpatialHash interface.

1.7.88 Added SmartsPattern::match().

1.7.87 Use Python/2.7.9-05st.
 Added boost::serialization-based archive format (.msys extension).

1.7.86 Bump to numpy/1.6.2-35A
 Fix tools scripts so they use the right version of numpy and molfile.
 Make the rms routines more general.

1.7.85 Fixed construction of provenance from Python.
 Improvements to mmod_type handling in dms2mae.
 Table properties in TermTable. New msys_table_properties in dms.
 Incorporate fastjson and pfx into msys.

1.7.84 IMPROVED: Alchemical mapping now merges dummy fragments connected to the same real atom into one fragment, and thus retains more permissible terms.

1.7.83 System.topology now returns a pfx.Graph object.

1.7.82 Fixed reading and writing of large (>2GB) dms files.

1.7.80 Fix memory leak in msys.pfx.aligned_rmsd.
 Added Python bindings for CalcDihedralGeometry.

1.7.79 Revert boost version change.

1.7.78 C++ header fixes for spatial_hash.
 C++ - Bump boost and zlib versions.

1.7.77 FIXED: dms-alchemical typos.

1.7.76 NEW: SpatialHash Python class for efficient findWithin and findNearest.
 NEW: System.selectArr to return atom selections as numpy array of ids.
 NEW: C++ within.hxx renamed to spatial_hash.hxx.

1.7.75 FIXED: Allow structure-only saves with partial nonbonded params.
 FIXED: Use sse2 rather than sse4 in new FindWithin code.
 FIXED: FindWithin crashed on empty subselection.
 NEW: keep-none for dms-alchemical.
 NEW: Write msys_file_offset in mol2 files.

1.7.74 FIXED: xyz files now written with element name rather than number.
 FIXED: better bond guessing for systems with virtuals.
 NEW: distance based atom selections got a lot faster.

1.7.72 FIXED: bfactor and occupancy output in pdb files wasn't quite working.
 FIXED: System.append() and PDB importer now always preserve atom order.
 FIXED: permissions on dms-fix-water-residues.

1.7.71 FIXED: write bfactor and occupancy to pdb files.
 NEW: C++ system.hxx no longer includes {term,param}_table.hxx.

1.7.70 FIXED: handling of element names with extraneous characters
 FIXED: addTable should be no-op when table already exists.
 NEW: dms-set takes any supported file type.

1.7.69 FIXED: Fix error handling in certain Python bindings.
 FIXED: dms-validate for check-gruops.
 FIXED: validate output formatting
 FIXED: read/write PDB space group
 NEW: Saving to stdout.sdf writes to stdout.
 NEW: API change for msys.groups

1.7.68 NEW: dms-validate --anton checks for contacts shorter than 1A,
 including those that cross periodic boundaries.
 FIXED: The bond guesser (used during loading of pdb files) sometimes
 handled hydrogens bonded to multiple atoms incorrectly.
 FIXED: System.findContactIds should be stable now.
 FIXED: System.topology was too slow.

1.7.67 FIXED: AppendSystem is smarter about merging global cells.
 FIXED: PDB readers weren't storing the global cell.
 FIXED: pfx.apply() wasn't returning the correct global cell,
 and the Python bindings for rsmd() failed for double
 precision inputs.

1.7.66 FIXED: msys.pfx.rmsd() was invalid when given double precision
 coordinates, and pfx.apply() was not returning the transformed
 unit cell when doing an alignment.

 MODULE SPLITS: atommatch now lives in the atommatch garden module.
 psfgen now lives in the desres-psfgen garden module.

1.7.65 IMPROVED: dms-validate checks that each water molecule has
 its own resid and lives in its own residue
 NEW: dms-fix-water-residues for putting each water molecule in
 its own residue.
 FIXED: appending systems now correctly merges nonbonded_info.

1.7.64 FIXED: SDF writer checks for isfinite() before calling floatify.

1.7.63 IMPROVED: SDF reader is more robust and handles multi-line values.

1.7.62 NEW: Bond.other(atom) from Python.
 NEW: C++ interface for FindWithin.

1.7.61 IMPROVED: Across-the-board speedups for all atom selections.
 IMPROVED: Notable improvements to "nearest" selections.
 NEW: "pbnearest" selection.
 NEW: lc5-l schemas.
 FIXED: Loading webpdb crashed in 1.7.60.

1.7.60 NEW: dms-find-knot has a --untie option to remove knots.
 NEW: LoadMany support for PDB files.
 IMPROVED: dms-find-knot has a --ignore-excluded-knots that uses
 the exclusion table
 IMPROVED: "nearest k to subsel" is much faster.
 IMPROVED: Delete property in ct block using python del operator.

1.7.59 FIXED: mol2 importer choked on resid 0.
 IMPROVED: read and writes TER records between chains in pdb files
 NEW: System.getTable() returns None on missing table.
 FIXED: (C++) don't link against libmolfile or libpython.

1.7.58 IMPROVED: dms-tile permits multiple input files, and requires -o.

1.7.57 IMPROVED: mol2 export includes original resids.

1.7.55 FIXED: dms-thermalize with --remove-drift doesn't accelerate pseudos.
 FIXED: addTableWithSchema accepts user-supplied name.
 IMPROVED: dms-frame gets otuput format from path name.
 NEW: Use pfx instead of periodicfix in dms-frame and other places.

1.7.54 FIXED: pdb export includes insertion code.

1.7.53 FIXED: dms-tile sets nonbonded_info and cell.
 IMPROVED: dms-info shows counts of pseudos and nucleic.
 NEW: Load handles PSF files.
 NEW: ReadPDBCoordinates() function.

1.7.52 CentOS6 portability.

1.7.49 FIXED: mol2 export was missing residues not in the first chain.
 IMPROVED: mol2 export now includes chain name.

1.7.48 FIXED: sdf export writes bond type 4 for resonant bond.
 FIXED: clone() and append() preserve bond resonant_order.

1.7.47 IMPROVED: psfgen.Psfgen got setCoordinates.
 IMPROVED: update to molfile/1.11.16.
 FIXED: psfgen.write() to dms was writing uninitialized global cell.

1.7.43 FIXED: System.name wasn't set when loading a pdb.
 FIXED: The segid atom selection keyword was missing.
 FIXED: The web pdb access code regex was too restrictive.
 FIXED: dms-reorder atoms: reference selection applies to all atoms.
 IMPROVED: load mae files with multiple consecutive m2io_version blocks.
 IMPROVED: Better error reporting of truncated mae files.

1.7.42 FIXED: Added POPS to the lipid atom selection macro.
 FIXED: The structure analyzer recognized waters with pseudos now.
 FIXED: Allow writing mae files with multi-line ct properties.
 IMPROVED: Added share_params option to clone().
 NEW: Can load from the pdb databank by specifying an accession code.

1.7.41 IMPROVED: SaveDMS accepts structure_only flag.
 IMPROVED: dms-validate --desmond runs the dms-check-groups test.
 FIXED: System.delXXX was confused by empty selections.

1.7.40 FIXED: build of command line tool documentation.
 IMPROVED: error recovery in msys.LoadMany (yield None on bad entry)
 IMPROVED: dms-validate checks for nonzero volume.
 IMPROVED: dms-thermalize has a --remove-drift option, on by default.

1.7.39 treetop/57-Anton2

1.7.38 IMPROVED: dms-select replaced its --append option with support for
 multiple input files.
 IMPROVED: Compilation improvements.

1.7.37 IMPROVED: PDB reader guesses atomic number form name if element is
 missing. END and ENDMDL records split PDB into cts.
 IMPROVED: PDB reader and writer handle formal charge in columns 79-80.
 IMPROVED: dms-select has -A/--assign option to assign formal charge
 and bond order.
 NEW: dms-tile and dms-replicate scripts.

1.7.35 FIXED: dms-dump truncated its fields to 10 characters; now output
 is separated by '|' rather than being formatted into columns.

1.7.34 IMPROVED: annotated system is now handles radicals
 (bond order assigner still does not)

1.7.33 FIXED: SDF counts line specification

1.7.32 FIXED: SDF exporter writes ct key-values.

1.7.31 FIXED: Read MAE files with fields containing hash symbols.
 NEW: Atommatch takes optional pair of atoms which must be matched.

1.7.30 FIXED: Another maegz fix.

1.7.29 FIXED: MAE export was confused by bonds to pseudos.
 FIXED: Bad image filename for latex2pdf documentation.

1.7.28 FIXED: Handle MAE files with m2io_version block at the end.

1.7.27 FIXED: Documentation of command line tools matches result of -h.
 FIXED: SaveMAE supports lists of Systems again.
 FIXED: dms-find-knot finds knots crossing periodic boundaries.
 IMPROVED: dms-find-knot is much faster.
 NEW: SerializeMAE instead of SaveMAE(path=None) for MAE contents.
 NEW: XYZ file export.
 NEW: dms-posre takes --max-energy and --max-distance options.
 FIXED: dms-grease puts lipids in their own ct, leaving chains unchanged.

1.7.24 IMPROVED: Documentation
 REMOVED: ExportMAE() no longer takes a list argument; use append=True.
 NEW: ExportMAE() takes path=None to return MAE file contents.
 FIXED: Type checks for delAtom, etc.
 FIXED: Don't consider saturated elements for hydrogen addition.

1.7.23 FIXED: bond order assignments for disulfides and hypervalent halogens

1.7.22 FIXED: Handle maegz files containing multiple zlib streams.

1.7.21 NEW: Add dms-atommatch program and msys.atommatch Python library
 FIXED: dms-alchemical keeps more bonded terms involving dummy atoms

1.7.19 FIXED: dms-alchemical handles constraint tables with extra
 informative parameter columns.

1.7.18 FIXED: dms-alchemical handles more complex topologies.
 FIXED: dms-alchemical keeps dihedral terms, not just bonds and angles.

1.7.17 NEW: Python bindings for ComputeTopologicalIds.
 NEW: dms-check-groups to check for valid initial conformation.
 NEW: AddHydrogens routine.
 NEW: Can append to a specific ct, rather than always create new cts.
 IMPROVED: GuessHydrogenPositions works much better now.
 IMPROVED: dms-fix-mass checks for consistency of atomic number and mass.
 FIXED: MAE writer now handles negative atomic numbers.

1.7.16 NEW: faster InChI c interface added
 IMPROVED: bond order assignment speed (dimension of ILP reduced)
 OTHER: resonance bond order/formal charge generation disabled

1.7.15 FIXED: Make dms-select use desres-cleanenv.

1.7.14 NEW: msys.Save() function understands filename extensions.
 FIXED: Better hybridization detection.
 FIXED: SaveMAE preserves atom order (broken since 1.7.0).
 C++: load.hxx was renamed to io.hxx.

1.7.13 NEW: Python bindings for {Period,Group}ForElement.
 NEW: Python bindings for Calc{Distance,Angle,Dihedral,Planarity}.

1.7.12 NEW: The GlobalCell class is gone; System.cell is now represented
 a 3x3 NumPy array. getCell() still returns a copy of the cell
 as before. Small API change but no change in behavior of the
 existing interfaces.
 NEW: The Vec3 class was removed from the Python interface; it was there
 only to support the GlobalCell class.

1.7.11 NEW: AbbreviationForElement in Python interface.
 FIXED: ct properties were being improperly shared.
 FIXED: mol2 and sdf import/export better supports multiple entries.
 FIXED: dms-dump looks for more than six cmap tables.

1.7.10 FIXED: Atom selections with names beginning with digits were broken
 since 1.7.7.

1.7.9 FIXED: Amber prm files with nontrivial dihedral phases could be misread.

1.7.8 FIXED: Amber prm file should still add bonds when structure_only=True.
 FIXED: Amber prm file was sometimes incorrectly rejected.
 FIXED: GuessAtomicNumber for python.

1.7.7 NEW: New atom selection parser based on flex/yacc.
 NEW: smarts atom selection keyword.
 NEW: ParamTable.addParam() takes keyword arguments.
 FIXED: msys.AssignBondOrderAndFormalCharges(mol) is now much faster.
 FIXED: dms-validate has more useful options.
 FIXED: dms-alchemical does a sanity check.

1.7.6 FIXED: msys.knots was broken, which broke dms-validate.
 FIXED: dms-validate didn't properly handle systems with pseudos.
 FIXED: Read occupancy and bfactor from PDB files.
 FIXED: Bring back msys.GetSSSR.

1.7.5 FIXED: SaveMAE puts quotes around strings containing braces.
 FIXED: Catch misuse of System.chain(<string>), etc.

1.7.3 FIXED: maedms didn't apply LJ scale to pair terms with vdw overrides.

1.7.2 NEW: System.clone() accepts a list of atom ids.
 NEW: Recipes section in the documentation.
 FIXED: Better bond order assigner.
 FIXED: Read proper_harm in MAE files.

1.7.1 NEW: dms-select learned --coalesce.
 NEW: inchi.InChI function.
 FIXED: SDF reader handles formal charge and some keyvals
 FIXED: bond order assigner gives up instead of hanging
 FIXED: Improved aromaticity and hybridization detection.

1.7.0 NEW: Ct class for multiple components and system attributes.
 NEW: ctnumber atom selection keyword (matches VMD's).
 NEW: dms_version in the DMS file.
 FIXED: Load[Many] failed on some compressed MAE files.
 DEPRECATED: all glue functionality (modern periodicfix doesn't need it).

1.6.35 NEW: Class AnnotatedSystem to cache rings and aromaticity
 FIXED: Aromaticity detection now operates on entire ring systems
 REMOVED: SSSR/ring aromaticity global functions in Python interface
 REMOVED: SSSR cache and AllRelevantSSSR function in System

1.6.33 NEW: NBFix support in ExportMAE.
 NEW: ExportMAEMany. msys.SaveMAE accepts list of Systems.
 NEW: msys_provenance and msys_forcefield blocks in exported MAE systems.
 NEW: msys.LoadMany works with all filetypes.
 NEW: msys.Graph.matchAll can do substructure searches.

1.6.32 NEW: msys.LoadMany and C++ LoadIterator interface for working with
 multi-structure files.
 NEW: msys.Atomsel class with RMSD calculation and superposition.
 FIXED: dms-set was broken.

1.6.31 FIXED: Read m_grow_name in ImportMAE.

1.6.30 FIXED: dms-frame was broken.
 FIXED: protein backbone must have minimally correct bond topology.

1.6.28 NEW: dms-sequence tool and msys.sequence.Sequences() function.
 NEW: dms-reorder-atoms
 FIXED: dms-scale-vdw now requires --scale options.
 FIXED: Bond guesser keeps only the shortest bond to hydrogens.
 FIXED: Make PDB output more conformant.
 FIXED: ExportMAE no longer writes 0-length chain names.

1.6.25 REMOVED: msys.glue module and dms-glue program.
 FIXED: No more MSYS_CLEANENV.

1.6.24 REMOVED: mview is now in its own mview module.

1.6.23 NEW: inchi.Strings python interface.
 FIXED: mae and dms read and write insertion code.

1.6.21 NEW: Print count of override pairs in dms-info.
 NEW: mview tool for viewing dms file contents.
 NEW: Added es_funct field to nonbonded_info.

1.6.20 NEW: Enable support for hybridization matching in SMARTS matcher.
 FIXED: Deleted printf chatter.

1.6.19 NEW: Load() has a structure_only option.

1.6.18 FIXED: SmartsMatcher for systems with pseudos.
 FIXED: TermTable find methods don't return duplicate terms when
 the terms contain duplicate atoms.

1.6.17 NEW: class SmartsPattern.
 NEW: MassForElement() function.
 FIXED: dms-dump handles systems with missing expected tables.

1.6.15 NEW: Added 'insertion' as a residue property.
 NEW: PDB reader reads 'altloc' as extra atom property.
 NEW: Added System.atomsGroupedBy(prop) convenience method.
 NEW: dms-posre learned --reference-structure and --reference-selection
 C++: aromatic.hxx is visible.

1.6.14 NEW: Using gcc/4.7.2, Python/2.7.3, and numpy/1.6.2.

1.6.13 FIXED: dms-alchemical handles hoh constraints in the atom map.

1.6.12 FIXED: TermTable.findOnly() makes its input sorted and unique.
 NEW: Param.keys() and Term.keys()

1.6.11 NEW: SDF export.
 NEW: RadiusForElement() function.
 NEW: FindDistinctFragments() function.
 NEW: dms-inchi tool.
 FIXED: LoadMAE handles forcefield provenance better.

1.6.10 FIXED: CreateSystem() is thread-safe again.

1.6.9 FIXED: System.atoms is now (amortized) constant time.
 NEW: dms-select now reads any msys-supported file type, not just dms.
 NEW: mae2dms supports fbhw terms.

1.6.8 FIXED: Bug in sidechain detection for residues with non-unique names.

1.6.7 FIXED: FindKnot uses within selections instead of boxing.
 FIXED: Restored the max-cycle option to FindKnot.

1.6.6 NEW: 'sidechain' atom selection.
 FIXED: bad int and float literals in atom selections are caught.
 FIXED: FindKnot uses accurate ring finder from GetSSSR.
 REMOVED: stretch_quartic schema.

1.6.5 NEW: stretch_quartic schema.

1.6.4 FIXED: dms-alchemical checks for valid atom maps.
 FIXED: dms-alchemical avoid writing unnecessary alchemical terms.
 NEW: TermTable.findWithOnly.

1.6.3 FIXED: SavePDB writes element determined from atomic number.

1.6.2 NEW: Heuristic for guessing bonds. From Python: System.guessBonds()
 NEW: xyz importer.
 NEW: xyz and pdb importers guess bonds.
 NEW: pdb importer reads and writes unit cell.

1.6.1 NEW: mol2 import/export support.
 NEW: AssignBondOrderAndFormalCharge function (was in Viparr)
 NEW: GetSSSR (smallest set of smallest rings) (was in Viparr)

1.6.0 NEW: The Python atom selection handles large selections much more
 efficiently.
 NEW: Added System.selectIds(), which is more efficient than
 System.select() if all you need are the ids.
 NEW: C++ interface for working with override tables.
 NEW: Experimental support for multiple nonbonded tables. When present,
 a new metatable in the DMS file will be created.

1.5.14 NEW: protein, backbone, and water analysis is done on load instead of
 being repeated for each selection. This is faster and allows
 these selections to work on cloned subsets of the original system.
 FIXED: dms-uncharge works again now.
 FIXED: examples/alchemical_pair.py (for Schrodinger).
 FIXED: Python findWithAny, findWithAll, findExact for empty input.
 FIXED: __eq__ and __ne__ methods of System and ParamTable.
 FIXED: dms-dump raises an exception on sqlite errors.

1.5.13 NEW: Psfgen.read() and Psfgen.write() handle unit cell.
 FIXED: findWith{Any,All} on empty tables.

1.5.12 NEW: Psfgen.applyResidue does point mutations.
 NEW: C++ interface for filtered bonds.
 NEW: TermTable::resetParams(); in Python TermTable.params is settable.
 FIXED: deleting terms is faster now.
 FIXED: Psfgen.read() works now.
 FIXED: TermTable::hasTerm().
 FIXED: Destroyed TermTables appear empty.
 FIXED: Document dms-posre better.

1.5.11 NEW: Slightly optimized within selections.
 FIXED: dms-alchemical for noncontiguous alchemical ranges.

1.5.8 NEW: dms-fix-mass for fixing inconsitent masses.
 NEW: dms-find-knot for finding bonds passing through rings.
 NEW: dms-validate runs the knot check.
 FIXED: dms-alchemical handles alchemical_improper_harm .

1.5.7 FIXED: dms-alchemical was confused by extra properties in the B state.

1.5.6 FIXED: Memory leak in setPositions and setVelocities.

1.5.5 NEW: {get,set}Positions is ~100x faster due to NumPy integration.
 NEW: {get,set}Velocities is ~500x faster due to NumPy integration.
 NEW: System.center and Residue.center use NumPy.
 NEW: Low-level SystemPtr positions and velocities accessors take
 optional ids argument to get/set values for specified atoms.
 NEW: C++ interface for TermTable provides iterator for efficiency.

1.5.4 FIXED: SaveMAE reports error on failure.
 NEW: SaveMAE and SaveDMS print errno information on failure.

1.5.3 FIXED: Support SC{EE,NB}_SCALE_FACTOR in Amber PrmTop importer.

1.5.2 FIXED: System.setCell() converts its input to the correct type.

1.5.1 FIXED: dms-frame reads in double precision if possible.
 FIXED: Better error messages when accessing nonexistent Term properties.
 NEW: Added getPositions(), getVelocities(), and getCell() to System.

1.5.0 REMOVED: dms-neutralize, dms-solvate
 REMOVED: Undocumented "builder" module.
 FIXED: Documentation for dms-override-vdw, dms-scale-vdw
 NEW: dms-frame tool for extracting coordinates and doing periodic fix.
 NEW: C++ interface for guessing file type.

1.4.8 NEW dms-frame script for frame extraction with centering and wrapping.

1.4.7 NEW: ParamTable::find and TermTable::find{WithAny,WithAll,Exact}.
 NEW: msys.SavePDB.
 NEW: better logging in dms-override-vdw and dms-scale-vdw.
 FIXED: reading of alchemical dms files.
 FIXED: LoadPDB now uses correct chain/segid logic.
 FIXED: dms-dump prints nonbonded_combined information.

1.4.6 Portability (build without C++0x, and on OS X).

1.4.5 Renamed dms-scale-vdw --scale option to --scale-sigma and added
 --scale-epsilon.

1.4.4 Add minimal build configuration options.
 DMS import no longer panics on empty particle table.

1.4.3 Added dms-scale-vdw.

1.4.2 Make ImportDMS thread-safe.

1.4.1 Another way to handle nonbonded_combined_param tables. We now
 store the 2d table directly, so that we don't choke on systems
 whose entire vdw table has overrides. API changes at the Python
 and C++ level; dms-override-vdw is unchanged.

1.4.0 The nonbonded_combined_param is now loaded into a TermTable
 called nonbonded_combined which has a new category called override.
 No change to the dms representation, but code that uses msys must
 use the new API in override.hxx to handle vdw overrides.

 The clone() method now copies provenance.

 Reimplemented dms-combine-vdw correctly and renamed it to
 dms-override-vdw.

1.3.7 Hide functions that can conflict with other shared libraries.

1.3.6 Added executable path to provenance.

1.3.5 Internal changes to facilitate inclusion in larger builds.

1.3.4 DEPRECATED: dms-neutralize, dms-solvate.
 Fixed typo in dms-neutralize.
 Fixed equality checks between msys handles of different type.
 Fixed hashing of Term and Param handles.
 Fixed dms-dump nonbonded output for nonbonded param.
 mae2dms and dms2mae now try to preserve ffio_vdwtype names.

1.3.3 Added dms-combine-vdw.

1.3.2 Using 73-Desmond modules.

1.3.1 Fix ImportMAE handling of virtuals (broken in 1.3.0).
 Turn off type checking of particle and bond tables.
 Fix GuessAtomicNumber (affects ReadParmTop only).

1.3.0 Alchemical terms now appear in their own TermTable, and the paramB
 interfaces have been removed.

 Alchemical particles are now listed in an "alchemical_nonbonded" table;
 the chargeB, moiety, and alchemical properties have been removed.

 Alchemical particles can have arbitrary term properties, including
 "chargeC".

 Msys can now detect sharing of parameters by TermTables that share
 a ParamTable, not just within a single TermTable.

1.2.5 Export/import formal_charge to/from dms.

1.2.4 Avoid exporting std::vector of primitive types to python.
 Prmtop import bugfix for when torsions contain negative force constants

1.2.3 Export version info to python.

1.2.2 Module file now adds the -lmsys to DESRES_MODULE_LDLIBS

1.2.1 Much improved support for glue, including in clone() and append()
 operations. The glue table has been renamed to msys_glue, though
 msys will still read from both tables and merge the two.

 dms-thermalize: the random seed is now 1 by default so that results
 are reproducible.

1.2.0 segid is now a property of Chain.
 New tools: dms-set and dms-macro

1.1.1 dms-neutralize: fix for positive solute charge (DESRESCode#1352)
 dms-neutralize: remove ions if needed to achieve specified concentration
 Fix bug in atom selections on systems with deleted atoms

1.1.0 Added user-defined atom selection macros.
 New atom selection documentation.
 Bumped the minor version since selection macros are visible in the
 dms file.

1.0.13 Disambiguate residues by segid (DESRESCode#1345,1346)

1.0.12 dms-builder fixes

1.0.11 Fixed a memory corruption bug in the dms reading code.

1.0.10 neutralize: set the residue name of ions equal to the atom name.
 builder: preliminary support for charmm36.
 builder: guess atom type based on name if not provided in top file.

1.0.9 msys.Load() supports .maeff and .maeff.gz now.
 Documentation for DMS files converted from Desmond documentation.
 dms-validate --desmond to check for bonds between nonbonded atoms.

1.0.8 gzipped dms files are detected and handled automatically.
 Added msys.Load() for guessing file type from filename.
 dms-info works now on dms, mae, and prmtop files.
 Documentation for dms-validate.

1.0.7 Support for importing Amber prmtop and crd files.
 Update fastjson dependency.
 Documentation fixes.

1.0.6 Anton version: aligning dependencies with treetop/43-Anton.
 Blame scarpazz.

1.0.5 System.positions property.

1.0.4 Typo in dms-validate.

1.0.3 Bugfix: clone() and append() did not copy auxiliary tables (e.g. cmap).

1.0.2 Internal: fix symbol conflicts with other packages.

1.0.1 Documentation updates.
 Added dms-posre.

1.0.0 First stable release.

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 msys	

 	
 	
 msys.atomsel	

 	
 	
 msys.grease	

 	
 	
 msys.knot	

 	
 	
 msys.molfile	

 	
 	
 msys.pfx	

 	
 	
 msys.posre	

 	
 	
 msys.sequence	

 	
 	
 msys.thermalize	

 	
 	
 msys.update	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

_

 	
 	__contains__() (msys.Atom method)

 	(msys.Bond method)

 	__delitem__() (msys.Ct method)

 	__eq__() (msys.ParamTable method)

 	(msys.System method)

 	(msys.TermTable method)

 	__getinitargs__() (msys.System method)

 	__getitem__() (msys.Atom method)

 	(msys.Bond method)

 	(msys.Ct method)

 	(msys.IndexedFileLoader method)

 	(msys.Param method)

 	(msys.Term method)

 	__hash__() (msys.ParamTable method)

 	(msys.System method)

 	(msys.TermTable method)

 	__init__() (msys.AnnotatedSystem method)

 	(msys.atomsel.Atomsel method)

 	(msys.Graph method)

 	(msys.HydrogenBondFinder method)

 	(msys.InChI method)

 	(msys.IndexedFileLoader method)

 	(msys.ParamTable method)

 	(msys.SmartsPattern method)

 	(msys.SpatialHash method)

 	(msys.System method)

 	(msys.SystemImporter method)

 	(msys.TermTable method)

 	__len__() (msys.atomsel.Atomsel method)

 	(msys.IndexedFileLoader method)

 	__lt__() (msys.Atom method)

 	(msys.Bond method)

 	
 	__ne__() (msys.ParamTable method)

 	(msys.System method)

 	(msys.TermTable method)

 	__repr__() (msys.AnnotatedSystem method)

 	(msys.Atom method)

 	(msys.atomsel.Atomsel method)

 	(msys.Bond method)

 	(msys.Chain method)

 	(msys.Param method)

 	(msys.Residue method)

 	(msys.SmartsPattern method)

 	(msys.System method)

 	(msys.Term method)

 	(msys.TermTable method)

 	__setitem__() (msys.Atom method)

 	(msys.Bond method)

 	(msys.Ct method)

 	(msys.Param method)

 	(msys.Term method)

 	__str__() (msys.atomsel.Atomsel method)

 	(msys.InChI method)

 	__weakref__ (msys.AnnotatedSystem attribute)

 	(msys.BrokenBondsError attribute)

 	(msys.Graph attribute)

 	(msys.HydrogenBondFinder attribute)

 	(msys.InChI attribute)

 	(msys.IndexedFileLoader attribute)

 	(msys.SmartsPattern attribute)

 	(msys.SpatialHash attribute)

 	(msys.SystemImporter attribute)

A

 	
 	addAtom() (msys.Residue method)

 	(msys.System method)

 	(msys.SystemImporter method)

 	addAtomProp() (msys.System method)

 	addAuxTable() (msys.System method)

 	addBond() (msys.Atom method)

 	addbond() (msys.molfile.Atom method)

 	addBondProp() (msys.System method)

 	addChain() (msys.Ct method)

 	(msys.System method)

 	addCt() (msys.System method)

 	addNonbondedFromSchema() (msys.System method)

 	addParam() (msys.ParamTable method)

 	addProp() (msys.ParamTable method)

 	addResidue() (msys.Chain method)

 	(msys.System method)

 	addTable() (msys.System method)

 	addTableFromSchema() (msys.System method)

 	addTerm() (msys.TermTable method), [1]

 	addTermProp() (msys.TermTable method), [1]

 	alignCoordinates() (msys.atomsel.Atomsel method)

 	aligned_rmsd() (in module msys.pfx)

 	alignedRMSD() (msys.atomsel.Atomsel method)

 	altloc (msys.molfile.Atom attribute)

 	analyze() (msys.System method)

 	AnnotatedSystem (class in msys), [1]

 	anum (msys.molfile.Atom attribute)

 	append() (msys.Ct method)

 	(msys.System method)

 	apply() (in module msys.posre)

 	(in module msys.thermalize)

 	
 	ApplyDihedralGeometry() (in module msys)

 	aromatic() (msys.AnnotatedSystem method), [1]

 	(msys.Atom property)

 	asCapsule() (msys.System method)

 	AssignBondOrderAndFormalCharge() (in module msys)

 	at_time_ge() (msys.molfile.Reader method)

 	at_time_gt() (msys.molfile.Reader method)

 	at_time_le() (msys.molfile.Reader method)

 	at_time_lt() (msys.molfile.Reader method)

 	at_time_near() (msys.molfile.Reader method)

 	(msys.molfile.SeqFile.Reader method)

 	Atom (class in msys)

 	(class in msys.molfile)

 	atom() (msys.System method)

 	atom_props() (msys.System property)

 	atomic_number() (msys.Atom property)

 	atomPropType() (msys.System method)

 	atoms() (msys.Bond property)

 	(msys.Ct property)

 	(msys.Graph method)

 	(msys.molfile.Reader property)

 	(msys.Residue property)

 	(msys.System property)

 	(msys.Term property)

 	Atomsel (class in msys.atomsel)

 	atomsel() (msys.System method)

 	atomsGroupedBy() (msys.System method)

 	auxinfo() (msys.InChI property)

 	auxtable() (msys.System method)

 	auxtable_names() (msys.System property)

 	auxtables() (msys.System property)

 	axis() (msys.molfile.Grid property)

B

 	
 	bfactor (msys.molfile.Atom attribute)

 	Bond (class in msys)

 	bond() (msys.System method)

 	bond_props() (msys.System property)

 	bonded_atoms() (msys.Atom property)

 	bondorders() (msys.molfile.Reader property)

 	
 	bondPropType() (msys.System method)

 	bonds (msys.molfile.Atom attribute)

 	bonds() (msys.Atom property)

 	(msys.Ct property)

 	(msys.System property)

 	box() (msys.molfile.Frame property)

 	BrokenBondsError

C

 	
 	CalcAngle() (in module msys)

 	CalcDihedral() (in module msys)

 	CalcDistance() (in module msys)

 	CalcPlanarity() (in module msys)

 	can_read() (msys.molfile.Plugin property)

 	can_write() (msys.molfile.Plugin property)

 	category() (msys.TermTable property), [1]

 	cell() (msys.System property)

 	center() (msys.Residue property)

 	(msys.System property)

 	Chain (class in msys)

 	chain (msys.molfile.Atom attribute)

 	chain() (msys.Residue property)

 	(msys.System method)

 	chains() (msys.Ct property)

 	(msys.System property)

 	charge (msys.molfile.Atom attribute)

 	charge() (msys.Atom property)

 	
 	clone() (msys.System method)

 	CloneSystem() (in module msys)

 	close() (msys.molfile.Writer method), [1]

 	coalesce() (msys.TermTable method), [1]

 	coalesceTables() (msys.System method)

 	ComputeTopologicalIds() (in module msys)

 	ConvertFromOEChem() (in module msys)

 	ConvertFromRdkit() (in module msys)

 	ConvertToOEChem() (in module msys)

 	ConvertToRdkit() (in module msys)

 	count_overrides() (msys.TermTable method), [1]

 	CreateParamTable() (in module msys)

 	CreateSystem() (in module msys)

 	Ct (class in msys)

 	ct() (msys.Chain property)

 	(msys.System method)

 	cts() (msys.System property)

 	currentRMSD() (msys.atomsel.Atomsel method)

D

 	
 	data() (msys.molfile.Grid property)

 	degree() (msys.AnnotatedSystem method), [1]

 	delAtomProp() (msys.System method)

 	delAtoms() (msys.System method)

 	delAuxTable() (msys.System method)

 	delbond() (msys.molfile.Atom method)

 	delBondProp() (msys.System method)

 	delBonds() (msys.System method)

 	
 	delChains() (msys.System method)

 	delProp() (msys.ParamTable method)

 	delResidues() (msys.System method)

 	delTermProp() (msys.TermTable method), [1]

 	delTermsWithAtom() (msys.TermTable method), [1]

 	dpos() (msys.molfile.Frame property)

 	DtrReader (class in msys.molfile)

 	duplicate() (msys.Param method)

 	dvel() (msys.molfile.Frame property)

E

 	
 	errors() (msys.AnnotatedSystem property), [1]

 	
 	es_funct() (msys.NonbondedInfo property)

 	extended_energy() (msys.molfile.Frame property)

F

 	
 	fileinfo() (msys.molfile.DtrReader method)

 	filename_extensions (msys.molfile.SeqFile attribute)

 	filename_extensions() (msys.molfile.Plugin property)

 	find() (msys.HydrogenBondFinder method)

 	(msys.ParamTable method)

 	findBond() (msys.Atom method)

 	(msys.System method)

 	findContactIds() (msys.System method)

 	findContacts() (msys.SpatialHash method)

 	FindDistinctFragments() (in module msys)

 	findExact() (msys.TermTable method), [1]

 	findMatches() (msys.SmartsPattern method), [1]

 	findNearest() (msys.SpatialHash method)

 	findWithAll() (msys.TermTable method), [1]

 	findWithAny() (msys.TermTable method), [1]

 	findWithin() (msys.SpatialHash method)

 	findWithOnly() (msys.TermTable method), [1]

 	first() (msys.Bond property)

 	formal_charge() (msys.Atom property)

 	
 	FormatDMS() (in module msys)

 	FormatJson() (in module msys)

 	FormatSDF() (in module msys)

 	fpos() (msys.molfile.Frame property)

 	fragid() (msys.Atom property)

 	Frame (class in msys.molfile)

 	frame() (msys.molfile.DtrReader method)

 	(msys.molfile.Reader method), [1]

 	(msys.molfile.SeqFile.Reader method)

 	(msys.molfile.Writer method), [1]

 	frames() (msys.molfile.Reader method)

 	(msys.molfile.SeqFile.Reader method)

 	frameset_is_compact() (msys.molfile.DtrReader method)

 	frameset_path() (msys.molfile.DtrReader method)

 	frameset_size() (msys.molfile.DtrReader method)

 	fromCapsule() (msys.System class method)

 	FromSmilesString() (in module msys)

 	fromTimekeys() (msys.molfile.DtrReader static method)

 	fvel() (msys.molfile.Frame property)

G

 	
 	get() (msys.Ct method)

 	get_prop() (msys.molfile.SeqFile.Reader method)

 	getbondorder() (msys.molfile.Atom method)

 	GetBondsAnglesDihedrals() (in module msys)

 	getCell() (msys.System method)

 	getOverride() (msys.TermTable method), [1]

 	getPositions() (msys.System method)

 	GetRingSystems() (in module msys)

 	GetSSSR() (in module msys)

 	getTable() (msys.System method)

 	
 	getVelocities() (msys.System method)

 	Graph (class in msys)

 	Grease() (in module msys.grease)

 	Grid (class in msys.molfile)

 	grid() (msys.molfile.Reader method)

 	(msys.molfile.Writer method)

 	grid_data() (msys.molfile.Reader method)

 	grid_meta() (msys.molfile.Reader method)

 	guessBonds() (msys.System method)

 	GuessHydrogenPositions() (in module msys)

H

 	
 	has_velocities() (msys.molfile.Reader property)

 	hash() (msys.Graph method)

 	(msys.System method)

 	hash_atoms() (msys.Graph static method)

 	
 	hasTerm() (msys.TermTable method), [1]

 	hcount() (msys.AnnotatedSystem method), [1]

 	hybridization() (msys.AnnotatedSystem method), [1]

 	HydrogenBondFinder (class in msys)

I

 	
 	id() (msys.Param property)

 	(msys.Term property)

 	ids() (msys.atomsel.Atomsel property)

 	InChI (class in msys)

 	index_ge() (msys.molfile.DtrReader method)

 	index_gt() (msys.molfile.DtrReader method)

 	index_le() (msys.molfile.DtrReader method)

 	
 	index_lt() (msys.molfile.DtrReader method)

 	index_near() (msys.molfile.DtrReader method)

 	IndexedFileLoader (class in msys)

 	initialize() (msys.SystemImporter method)

 	insertion (msys.molfile.Atom attribute)

 	insertion() (msys.Residue property)

 	inverse_3x3() (in module msys.pfx)

K

 	
 	key() (msys.InChI property)

 	keys() (msys.Ct method)

 	(msys.Param method)

 	(msys.Term method)

 	
 	keyvals() (msys.molfile.DtrReader method)

 	kinetic_energy() (msys.molfile.Frame property)

L

 	
 	LineIntersectsTriangle() (in module msys)

 	Load() (in module msys)

 	LoadDMS() (in module msys)

 	LoadMAE() (in module msys)

 	LoadMany() (in module msys)

 	
 	LoadMol2() (in module msys)

 	LoadPDB() (in module msys)

 	LoadPrmTop() (in module msys)

 	LoadXYZ() (in module msys)

 	loneelectrons() (msys.AnnotatedSystem method), [1]

M

 	
 	mass (msys.molfile.Atom attribute)

 	mass() (msys.Atom property)

 	match() (msys.Graph method)

 	(msys.SmartsPattern method), [1]

 	matchAll() (msys.Graph method)

 	MatchFragments() (in module msys)

 	message() (msys.InChI property)

 	metadata() (msys.molfile.DtrReader property)

 	
 module

 	msys

 	msys.atomsel

 	msys.grease

 	msys.knot

 	msys.molfile

 	msys.pfx

 	msys.posre

 	msys.sequence

 	msys.thermalize

 	msys.update

 	moveby() (msys.molfile.Frame method)

 	
 	
 msys

 	module

 	
 msys.atomsel

 	module

 	
 msys.grease

 	module

 	
 msys.knot

 	module

 	
 msys.molfile

 	module

 	
 msys.pfx

 	module

 	
 msys.posre

 	module

 	
 msys.sequence

 	module

 	
 msys.thermalize

 	module

 	
 msys.update

 	module

N

 	
 	name (msys.molfile.Atom attribute)

 	(msys.molfile.SeqFile attribute)

 	name() (msys.Atom property)

 	(msys.Chain property)

 	(msys.Ct property)

 	(msys.molfile.Grid property)

 	(msys.molfile.Plugin property)

 	(msys.Residue property)

 	(msys.System property)

 	(msys.TermTable property), [1]

 	natoms() (msys.Ct property)

 	(msys.molfile.DtrReader property)

 	(msys.molfile.Reader property)

 	(msys.molfile.SeqFile.Reader property)

 	(msys.Residue property)

 	(msys.SmartsPattern property), [1]

 	(msys.System property)

 	(msys.TermTable property), [1]

 	nbonds() (msys.Atom property)

 	(msys.System property)

 	
 	nchains() (msys.Ct property)

 	(msys.System property)

 	ncts() (msys.System property)

 	next() (msys.molfile.Reader method)

 	nframes() (msys.molfile.DtrReader property)

 	(msys.molfile.Reader property)

 	(msys.molfile.SeqFile.Reader property)

 	nframesets() (msys.molfile.DtrReader property)

 	ngrids() (msys.molfile.Reader property)

 	nhydrogens() (msys.Atom property)

 	nonbonded_info() (msys.System property)

 	NonbondedInfo (class in msys)

 	NonbondedSchemas() (in module msys)

 	noverrides() (msys.TermTable property), [1]

 	nparams() (msys.ParamTable property)

 	nprops() (msys.ParamTable property)

 	nresidues() (msys.Chain property)

 	(msys.System property)

 	nterms() (msys.TermTable property), [1]

O

 	
 	occupancy (msys.molfile.Atom attribute)

 	ok() (msys.InChI property)

 	order() (msys.Bond property)

 	
 	origin() (msys.molfile.Grid property)

 	other() (msys.Bond method)

 	override_params() (msys.TermTable property), [1]

 	overrides() (msys.TermTable method), [1]

P

 	
 	Param (class in msys)

 	param() (msys.ParamTable method)

 	(msys.Term property)

 	params() (msys.ParamTable property)

 	(msys.TermTable property), [1]

 	ParamTable (class in msys)

 	ParseSDF() (in module msys)

 	path() (msys.IndexedFileLoader property)

 	(msys.molfile.DtrReader property)

 	pattern() (msys.SmartsPattern property), [1]

 	Plugin (class in msys.molfile)

 	
 	pos() (msys.Atom property)

 	(msys.molfile.Frame property)

 	position() (msys.molfile.Frame property)

 	positions() (msys.System property)

 	potential_energy() (msys.molfile.Frame property)

 	pressure() (msys.molfile.Frame property)

 	pressure_tensor() (msys.molfile.Frame property)

 	prettyname() (msys.molfile.Plugin property)

 	props() (msys.ParamTable property)

 	(msys.TermTable property), [1]

 	propType() (msys.ParamTable method)

 	provenance() (msys.System property)

R

 	
 	radius (msys.molfile.Atom attribute)

 	raw_alignment() (msys.atomsel.Atomsel method)

 	read() (msys.molfile.Plugin method)

 	(msys.molfile.SeqFile class method)

 	ReadCrdCoordinates() (in module msys)

 	Reader (class in msys.molfile)

 	ReadPDBCoordinates() (in module msys)

 	reload() (msys.molfile.DtrReader method)

 	remove() (msys.Atom method)

 	(msys.Bond method)

 	(msys.Chain method)

 	(msys.Ct method)

 	(msys.Residue method)

 	(msys.Term method)

 	(msys.TermTable method), [1]

 	
 	remove_drift() (in module msys.thermalize)

 	reopen() (msys.molfile.Reader method)

 	replaceWithSortedTerms() (msys.TermTable method), [1]

 	resid (msys.molfile.Atom attribute)

 	resid() (msys.Residue property)

 	Residue (class in msys)

 	residue() (msys.System method)

 	residues() (msys.Chain property)

 	(msys.System property)

 	resname (msys.molfile.Atom attribute)

 	ringbondcount() (msys.AnnotatedSystem method), [1]

S

 	
 	Save() (in module msys)

 	save() (msys.System method)

 	SaveDMS() (in module msys)

 	SaveMAE() (in module msys)

 	SaveMol2() (in module msys)

 	SavePDB() (in module msys)

 	second() (msys.Bond property)

 	segid (msys.molfile.Atom attribute)

 	segid() (msys.Chain property)

 	select() (msys.molfile.Frame method)

 	(msys.System method)

 	selectArr() (msys.System method)

 	selectAtom() (msys.Residue method)

 	selectChain() (msys.System method)

 	selectCt() (msys.System method)

 	selectIds() (msys.System method)

 	selectResidue() (msys.Chain method)

 	SeqFile (class in msys.molfile)

 	SeqFile.Reader (class in msys.molfile)

 	Sequences() (in module msys.sequence)

 	
 	SerializeMAE() (in module msys)

 	setbondorder() (msys.molfile.Atom method)

 	setCell() (msys.System method)

 	setOverride() (msys.TermTable method), [1]

 	setPositions() (msys.System method)

 	setVelocities() (msys.System method)

 	size() (msys.Graph method)

 	skip() (msys.molfile.Reader method)

 	SmartsPattern (class in msys), [1]

 	sorted() (msys.System method)

 	SpatialHash (class in msys)

 	string() (msys.InChI property)

 	svd_3x3() (in module msys.pfx)

 	sync() (msys.molfile.Writer method)

 	System (class in msys)

 	system() (msys.atomsel.Atomsel property)

 	(msys.Param property)

 	(msys.SystemImporter property)

 	(msys.Term property)

 	(msys.TermTable property), [1]

 	SystemImporter (class in msys)

T

 	
 	table() (msys.Param property)

 	(msys.System method)

 	(msys.Term property)

 	table_names() (msys.System property)

 	tables() (msys.System property)

 	TableSchemas() (in module msys)

 	temperature() (msys.molfile.Frame property)

 	Term (class in msys)

 	term() (msys.TermTable method), [1]

 	term_props() (msys.TermTable property), [1]

 	termPropType() (msys.TermTable method), [1]

 	
 	terms() (msys.TermTable property), [1]

 	TermTable (class in msys), [1]

 	time() (msys.molfile.Frame property)

 	times() (msys.molfile.DtrReader method)

 	(msys.molfile.Reader property)

 	topology() (msys.molfile.Reader property)

 	(msys.System property)

 	total_bytes() (msys.molfile.DtrReader method)

 	total_energy() (msys.molfile.Frame property)

 	translate() (msys.System method)

 	truncate() (msys.molfile.Writer method)

 	type (msys.molfile.Atom attribute)

U

 	
 	Update() (in module msys.update)

 	
 	updateFragids() (msys.System method)

V

 	
 	valence() (msys.AnnotatedSystem method), [1]

 	(msys.Atom property)

 	vdw_funct() (msys.NonbondedInfo property)

 	vdw_rule() (msys.NonbondedInfo property)

 	vel() (msys.Atom property)

 	(msys.molfile.Frame property)

 	
 	velocity() (msys.molfile.Frame property)

 	version() (msys.molfile.Plugin property)

 	virial_tensor() (msys.molfile.Frame property)

 	voxelize() (msys.SpatialHash method)

 	vx() (msys.Atom property)

 	vy() (msys.Atom property)

 	vz() (msys.Atom property)

W

 	
 	warnings() (msys.SmartsPattern property), [1]

 	
 	write() (msys.molfile.Plugin method)

 	Writer (class in msys.molfile)

X

 	
 	x() (msys.Atom property)

Y

 	
 	y() (msys.Atom property)

Z

 	
 	z() (msys.Atom property)

 nav.xhtml

 Table of Contents

 		
 The Msys library

 		
 Overview

 		
 Molecular Structures

 		
 Forcefields

 		
 Reading and Writing Files

 		
 Mapping of residues and chains

 		
 Whitespace in atom, residue and chain names

 		
 Atom selections

 		
 Grammar

 		
 Differences with VMD

 		
 Built-in selections

 		
 Smarts pattern selections

 		
 Parameter type selections

 		
 Comparison selections

 		
 User-defined keywords

 		
 User-defined atom selection macros

 		
 Python Scripting

 		
 Overview

 		
 Msys ids

 		
 Msys properties

 		
 Getting started

 		
 Adding new forcefield terms

 		
 Files with multiple components

 		
 The msys module

 		
 The Atomsel class

 		
 Dealing with duplicate parameters

 		
 Sharing ParamTables

 		
 Pfx

 		
 What pfx does

 		
 Specifying topology

 		
 Specifying glue

 		
 Performing both centering and alignment

 		
 What about periodicfix?

 		
 Molfile

 		
 Reader

 		
 Writer

 		
 AnnotatedSystem

 		
 SmartsPattern

 		
 Nonbonded parameters

 		
 Alternative nonbonded tables

 		
 Overriding nonbonded interactions

 		
 Alchemical nonbonded interactions

 		
 NonbondedInfo

 		
 Command line tools

 		
 Conversion

 		
 mae2dms

 		
 dms2mae

 		
 Information

 		
 dms-version

 		
 dms-info

 		
 dms-dump

 		
 dms-diff

 		
 Basic Manipulation

 		
 dms-fix-mass

 		
 dms-frame

 		
 dms-reorder-atoms

 		
 dms-select

 		
 dms-sequence

 		
 dms-set

 		
 Structure building

 		
 dms-grease

 		
 dms-thermalize

 		
 dms-posre

 		
 dms-tile

 		
 dms-replicate

 		
 dms-solvate

 		
 dms-neutralize

 		
 Validation

 		
 dms-find-knot

 		
 dms-validate

 		
 dtr-validate

 		
 Recipes

 		
 Obtaining force-field parameters for certain atoms

 		
 Adding artificial bonds

 		
 Adding energy groups

 		
 Remove selected constraints

 		
 Canonicalize position restraint terms

 		
 Processing multi-entry files (e.g. SDF files)

 		
 Processing large SDF files

 		
 Change the mass of selected atoms

 		
 DMS Files

 		
 Overview

 		
 Units

 		
 Versioning

 		
 Chemical Structure

 		
 Particles

 		
 Bonds

 		
 The global cell

 		
 Additional particle properties

 		
 Ct properties

 		
 Forcefields

 		
 Metatables

 		
 Bond Terms

 		
 Exclusions

 		
 Constraint Terms

 		
 Virtual sites

 		
 Nonbonded interactions

 		
 Alchemical systems

 		
 References

 		
 Release notes

_images/msys_overview.png
@EE e

000000000

O

m

EHCHITY

O@EE

>8
>

g
o
£
2
o o m ek_.m
ED||EZ e8|l ESS
g8 882 s8¢
S
.m A S
(%}
S & &
A\ J & \fA

_static/plus.png

_static/file.png

_static/minus.png

